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The present paper introduces a class of finite volume schemes of increasing order of accu-
racy in space and time for hyperbolic systems that are in conservation form. The methods
are specially suited for efficient implementation on structured meshes. The hyperbolic sys-
tem is required to be non-stiff. This paper specifically focuses on Euler system that is used
for modeling the flow of neutral fluids and the divergence-free, ideal magnetohydrody-
namics (MHD) system that is used for large scale modeling of ionized plasmas.

Efficient techniques for weighted essentially non-oscillatory (WENO) interpolation have
been developed for finite volume reconstruction on structured meshes. We have shown
that the most elegant and compact formulation of WENO reconstruction obtains when
the interpolating functions are expressed in modal space. Explicit formulae have been pro-
vided for schemes having up to fourth order of spatial accuracy. Divergence-free evolution
of magnetic fields requires the magnetic field components and their moments to be defined
in the zone faces. We draw on a reconstruction strategy developed recently by the first
author to show that a high order specification of the magnetic field components in zone-
faces naturally furnishes an appropriately high order representation of the magnetic field
within the zone.

We also present a new formulation of the ADER (for Arbitrary Derivative Riemann Prob-
lem) schemes that relies on a local continuous space–time Galerkin formulation instead of
the usual Cauchy–Kovalewski procedure. We call such schemes ADER-CG and show that a
very elegant and compact formulation results when the scheme is formulated in modal
space. Explicit formulae have been provided on structured meshes for ADER-CG schemes
in three dimensions for all orders of accuracy that extend up to fourth order. Such ADER
schemes have been used to temporally evolve the WENO-based spatial reconstruction.
The resulting ADER-WENO schemes provide temporal accuracy that matches the spatial
accuracy of the underlying WENO reconstruction.

In this paper we have also provided a point-wise description of ADER-WENO schemes for
divergence-free MHD in a fashion that facilitates computer implementation. The schemes
reported here have all been implemented in the RIEMANN framework for computational
astrophysics. All the methods presented have a one-step update, making them low-storage
alternatives to the usual Runge–Kutta time-discretization. Their one-step update also
makes them suitable building blocks for adaptive mesh refinement (AMR) calculations.

We demonstrate that the ADER-WENO meet their design accuracies. Several stringent
test problems of Euler flows and MHD flows are presented in one, two and three
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dimensions. Many of our test problems involve near infinite shocks in multiple dimensions
and the higher order schemes are shown to perform very robustly and accurately under all
conditions. It is shown that the increasing computational complexity with increasing order
is handily offset by the increased accuracy of the scheme. The resulting ADER-WENO
schemes are, therefore, very worthy alternatives to the standard second order schemes
for compressible Euler and MHD flow.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The accurate simulation of hydrodynamical and magnetohydrodynamical (MHD) flows is an important topic in several
areas of science and engineering. Much progress has been made towards that goal. While second order accurate simulations
have been carried out for a while, recent advances have made it possible to go beyond second order accuracy. Early attempts
to go beyond second order have been catalogued in Harten et al. [36], Shu and Osher [50] and [51], Barth and Frederickson
[12] and Suresh and Huynh [53]. Liu et al. [42], Jiang and Shu [40] and Balsara and Shu [9] presented finite difference
weighted essentially non-oscillatory (WENO) schemes for hydrodynamics. The WENO interpolation used in such schemes
is usually coupled with a Runge–Kutta (RK) time update strategy from Shu and Osher [50] to yield schemes that have spatial
and temporal accuracies that are well-matched. While the finite difference WENO schemes handily meet their design accu-
racies, they do not take well to non-uniform or hierarchical meshes. For that reason it is advantageous to have finite-volume
WENO schemes which can be seamlessly used as building blocks for adaptive mesh refinement (AMR) calculations, see
Berger and Colella [13] and Balsara [3]. Higher order accurate schemes that have a finite volume-like structure have been
designed for structured meshes, see Balsara et al. [7] and Balsara [6] and also for unstructured meshes, see Hu and Shu
[37], Zhang and Shu [60], Dumbser and Käser [28] and Dumbser et al. [29]. The purpose of this paper is to catalogue
finite-volume WENO schemes that go beyond second order accuracy on structured meshes.

As shown by Colella [17], it is also very advantageous to use schemes that have a one-step temporal update as building
blocks for AMR calculations. All of the RK schemes from Shu and Osher [50] lack such a one-step structure. While dense out-
put RK schemes can be devised, it is still very desirable to have schemes that retain a simple one-step time update. ADER (for
Arbitrary Derivative Riemann Problem) schemes have seen a fair bit of recent evolution, see Titarev and Toro [55] and [56],
Toro and Titarev [57], Dumbser et al. [27] and Dumbser et al. [26]. Recent versions of ADER schemes, see Dumbser et al. [26],
have the right kind of one-step temporal update that makes them very convenient for higher order AMR work. Thus the fur-
ther goal of this paper is to present finite-volume ADER-WENO schemes that have a one-step temporal update. In order to
achieve balanced performance, all of the schemes presented here have increasing spatial accuracy that is matched by a cor-
responding increase in temporal accuracy. The resulting schemes are eminently well-suited for high accuracy hydrodynam-
ical calculations and can serve as good building blocks for block structured AMR calculations.

Numerical magnetohydrodynamics (MHD) plays an important role in astrophysics, aerospace, space physics and plasma
physics applications. It is therefore very interesting to develop highly accurate methods for simulating MHD phenomena. The
structure of the compressible MHD eigensystem is well-understood, Jeffrey and Taniuti [39], Roe and Balsara [47], making it
possible to develop high resolution shock-capturing methods for this system. Most of the early work was focused on devel-
oping higher order Godunov schemes with second order of accuracy, Dai and Woodward [20], Ryu and Jones [48], Balsara
[1,2], Falle et al. [32] and Crockett et al. [19]. The magnetic field in MHD obeys the following evolutionary equation:
oB
ot
¼ r� ðv � BÞ; ð1Þ
where v is the fluid velocity and B is the magnetic field. The structure of Eq. (1) is such that the magnetic field remains diver-
gence-free in its time-evolution, i.e. it satisfies the constraint
r � B ¼ 0: ð2Þ
Retaining a divergence-free aspect in the evolution of the magnetic field has been a design goal in devising methods for
numerical MHD, see Yee [59], Brackbill and Barnes [14], Brecht et al. [15] and DeVore [24]. Higher order Godunov schemes
that provide divergence-free evolution of magnetic fields have been available, see Dai and Woodward [21], Ryu et al. [49],
Balsara and Spicer [10] and [11], Balsara [5] and Londrillo and DelZanna [43]. Such schemes keep the magnetic field diver-
gence free throughout its evolution while offering the stability and robustness of a total variation diminishing (TVD) scheme.
Other formulations are also available that try to advect any magnetic field divergence that might form out of the computa-
tional domain, Powell [45], Dedner et al. [22].

In his study of AMR-MHD Balsara [3] invented a divergence-free reconstruction strategy for the magnetic field. The meth-
od was based on realizing that the magnetic field in the interior of a zone is fully furnished by specifying its field components
and their variation within the zone-faces and imposing the divergence-free constraint from Eq. (2). Balsara [3] also used a
one-step temporal update strategy as a building block for AMR calculations. Balsara [5] showed that the same diver-
gence-free reconstruction is also useful in designing very high quality second order accurate schemes for numerical MHD.
The same divergence-free reconstruction has been extended to higher orders by Balsara [6] who used it along with an RK
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time-update strategy to obtain MHD schemes that were better than second order accurate. An early version of an ADER
scheme for MHD was also presented by us in Taube et al. [54]. The goal of the present paper is to present modern ADER-
WENO schemes for divergence-free MHD that have a one-step temporal update and could serve as building blocks for
AMR-MHD with spatial and temporal accuracy that goes beyond second order. The schemes mentioned in this paragraph
have all been implemented in the RIEMANN code for astrophysical fluid dynamics and have been successfully applied to
numerous astrophysical applications.

The paper is organized as follows. In Section 2 we present the WENO interpolation used here. Section 3 contains a descrip-
tion of the ADER scheme as well as its instantiation at third order. Section 4 very briefly describes the flux calculation and the
time-update steps. Section 4 also provides a point-wise description of the whole ADER-WENO scheme as it is implemented
on a computer. Section 5 catalogues the order property of the schemes that have been designed. Section 6 presents several
stringent hydrodynamical test problems while Section 7 does the same for MHD test problems.

2. Efficient, multi-dimensional WENO reconstruction on structured meshes

The first step in designing a high order scheme consists of reconstructing the flow variables within all zones in the com-
putational domain to the desired order of accuracy. Several good options exist in one dimension, see Jiang and Shu [40] and
Balsara and Shu [9]. The problem of carrying out a multidimensional reconstruction has been treated in Friedrich [33], Zhang
and Shu [60], Dumbser and Käser [28] and Balsara et al. [7]. We assume that each zone has a local set of coordinates given by
(x,y,z) 2 [�1/2,1/2] � [�1/2,1/2] � [�1/2,1/2]. The Legendre polynomials, suitably modified for the domain [�1/2,1/2], are
given by
P0ðxÞ ¼ 1; P1ðxÞ ¼ x; P2ðxÞ ¼ x2 � 1
12 ; P3ðxÞ ¼ x3 � 3

20 x;

P4ðxÞ ¼ x4 � 3
14 x2 þ 3

560 :
ð3Þ
The polynomial basis set given in Eq. (3) is orthogonal and has a diagonal mass matrix. Tensor products of these polynomials
yield an orthogonal, modal basis set in multiple dimensions. A variable ‘‘u” is, therefore, reconstructed to appropriate order
in the zone being considered when one has all the coefficients of the polynomial
uðx; y; zÞ ¼ u0 þ uxP1ðxÞ þ uyP1ðyÞ þ uzP1ðzÞ  second order
þ uxxP2ðxÞ þ uyyP2ðyÞ þ uzzP2ðzÞ
þ uxyP1ðxÞP1ðyÞ þ uyzP1ðyÞP1ðzÞ þ uxzP1ðxÞP1ðzÞ  third order
þ uxxxP3ðxÞ þ uyyyP3ðyÞ þ uzzzP3ðzÞ þ uxxyP2ðxÞP1ðyÞ þ uxyyP1ðxÞP2ðyÞ
þ uyyzP2ðyÞP1ðzÞ þ uyzzP1ðyÞP2ðzÞ þ uxxzP2ðxÞP1ðzÞ þ uxzzP1ðxÞP2ðzÞ
þ uxyzP1ðxÞP1ðyÞP1ðzÞ  fourth order: ð4Þ
The arrows in Eq. (4) show us the minimum sub-set of terms that are needed for achieving the desired order of accuracy. The
variable u0 is the zone-averaged value of the variable and is evolved using the governing equations. In a WENO scheme, the
remaining moments in Eq. (4) above are obtained by examining the smoothness properties of the neighboring zones. In a
pointwise WENO scheme, see Jiang and Shu [40] and Balsara and Shu [9] the cross-terms in Eq. (4) are not needed. Since
we wish to build a finite volume scheme, we have to reconstruct all the terms including the cross terms in Eq. (4). Several
of the strategies catalogued above for carrying out a multidimensional reconstruction can be used to obtain the moments in
Eq. (4). However, as shown in Balsara et al. [7], for structured meshes it is possible to simplify the reconstruction problem. In
that paper we showed that the modes along each coordinate direction in Eq. (4) can be obtained by using the dimension-by-
dimension formulation from Jiang and Shu [40] and Balsara and Shu [9]. In this paper we show that the expressions obtained
in Jiang and Shu [40] and Balsara and Shu [9] can be substantially simplified if cased in a modal formulation and our goal in
Section 2.1 is to catalogue that simplification. Balsara et al. [7] also presented an inexpensive strategy for obtaining the
remaining cross-terms in Eq. (4). In this paper we present an even less expensive strategy for obtaining the cross-terms
and such an advance is catalogued in Section 2.2. Section 2.3 catalogues the divergence-free reconstruction of magnetic
fields. In the vicinity of strong shocks it is also useful to flatten the interpolated profiles, as shown by Colella and Woodward
[18]. In Appendix A we provide a simple and serviceable flattening algorithm that works with multi-dimensional
reconstruction.

2.1. One-dimensional WENO formulation

The formulation presented here can be used along each dimension to limit the modes in Eq. (4) that do not contain cross-
terms. Casting the problem in a modal basis enables us to obtain expressions that are even more compact than those in Jiang
and Shu [40] and Balsara and Shu [9].

2.1.1. Third order reconstruction in one dimension
Consider the reconstruction problem in a zone labeled by a subscript ‘‘0”. We start with the neighboring zone-averaged

variables {u�2, u�1,u0,u1,u2}. A third order reconstruction over the zone labeled ‘‘0” can be carried out by using three stencils



D.S. Balsara et al. / Journal of Computational Physics 228 (2009) 2480–2516 2483
S1, S2 and S3 that rely on the variables {u�2,u�1,u0}, {u�1,u0,u1} and {u0,u1,u2}, respectively. The reconstructed polynomial is
then expressed as
uðxÞ ¼ u0 þ uxP1ðxÞ þ uxxP2ðxÞ: ð5Þ
The left-biased stencil S1 gives
ux ¼ �2u�1 þ u�2=2þ 3u0=2; uxx ¼ ðu�2 � 2u�1 þ u0Þ=2: ð6Þ
The central stencil S2 gives
ux ¼ ðu1 � u�1Þ=2; uxx ¼ ðu�1 � 2u0 þ u1Þ=2: ð7Þ
The right-biased stencil S3 gives
ux ¼ �3u0=2þ 2u1 � u2=2; uxx ¼ ðu0 � 2u1 þ u2Þ=2 ð8Þ
Eqs. (6)–(8) show a clear analogy to finite difference approximations. The smoothness measure for each of the three stencils
can then be written as
IS ¼ u2
x þ

13
3

u2
xx ð9Þ
In keeping with the philosophy of Dumbser and Käser [28] we do not strive to achieve fifth order accuracy by using the opti-
mal linear weights of Jiang and Shu [40]. Instead, we seek out stability in our reconstruction by giving the central stencil S2 a
linear weight that is 100 times larger than its one-sided partners, i.e. S1 and S3. Also keeping with Dumbser and Käser [28],
we raise the smoothness measures to the fourth power when constructing non-linear stencil weights. This choice of prefer-
ring stability over an increase in accuracy is also made for all the other WENO schemes in this section.

2.1.2. Fourth order reconstruction in one dimension
Consider the reconstruction problem in a zone labeled by a subscript ‘‘0”. We start with the neighboring zone-averaged

variables {u�3, u�2,u�1,u0,u1,u2,u3}. A fourth order reconstruction over the zone labeled ‘‘0” can be carried out by using four
stencils S1, S2, S3 and S4 that rely on the variables {u�3,u�2,u�1,u0}, {u�2,u�1,u0,u1}, {u�1,u0,u1,u2} and {u0,u1,u2,u3}, respec-
tively. The reconstructed polynomial is then expressed as
uðxÞ ¼ u0 þ uxP1ðxÞ þ uxxP2ðxÞ þ uxxxP3ðxÞ: ð10Þ
The stencil S1 gives
ux ¼ ð�177u�1 þ 87u�2 � 19u�3 þ 109u0Þ=60;
uxx ¼ �5u�1=2þ 2u�2 � u�3=2þ u0;

uxxx ¼ ð�3u�1 þ 3u�2 � u�3 þ u0Þ=6:
ð11Þ
The stencil S2 gives
ux ¼ ð�63u�1 þ 11u�2 þ 33u0 þ 19u1Þ=60;
uxx ¼ u�1=2� u0 þ u1=2;
uxxx ¼ ð3u�1 � u�2 � 3u0 þ u1Þ=6:

ð12Þ
The stencil S3 gives
ux ¼ ð�19u�1 � 33u0 þ 63u1 � 11u2Þ=60;
uxx ¼ u�1=2� u0 þ u1=2;
uxxx ¼ ð�u�1 þ 3u0 � 3u1 þ u2Þ=6:

ð13Þ
The stencil S4 gives
ux ¼ ð�109u0 þ 177u1 � 87u2 þ 19u3Þ=60;
uxx ¼ u0 � 5u1=2þ 2u2 � u3=2;
uxxx ¼ ð�u0 þ 3u1 � 3u2 þ u3Þ=6:

ð14Þ
The smoothness measure for each of the four stencils can then be written as
IS ¼ ðux þ uxxx=10Þ2 þ 13
3

u2
xx þ

781
20

u2
xxx: ð15Þ
Eq. (15) makes the positivity of the smoothness measure very apparent.

2.1.3. Fifth order reconstruction in one dimension
Though we do not present a fifth order scheme in this paper, the one-dimensional WENO reconstruction presented in

this sub-section was used as a building block for a very elegant ninth order pointwise WENO scheme in Balsara and Shu
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[9]. Because of the utility of that scheme, it is worthwhile presenting the simple and compact expressions for implement-
ing that scheme in this sub-section. Thus consider the reconstruction problem in a zone labeled by a subscript ‘‘0”. We
start with the neighboring zone-averaged variables {u�4,u�3,u�2,u�1,u0,u1,u2,u3,u4}. A fifth order reconstruction over
the zone labeled ‘‘0” can be carried out by using five stencils S1, S2, S3, S4 and S5 that rely on the variables
{u�4,u�3,u�2,u�1,u0}, {u�3,u�2,u�1,u0,u1} {u�2,u�1,u0,u1,u2}, {u�1,u0,u1,u2,u3} and {u0,u1,u2,u3,u4}, respectively. The recon-
structed polynomial is then expressed as
uðxÞ ¼ u0 þ uxP1ðxÞ þ uxxP2ðxÞ þ uxxxP3ðxÞ þ uxxxxP4ðxÞ: ð16Þ
The stencil S1 gives
ux ¼ ð�462u�1 þ 336u�2 � 146u�3 þ 27u�4 þ 245u0Þ=120;
uxx ¼ ð�240u�1 þ 262u�2 � 128u�3 þ 25u�4 þ 81u0Þ=56;
uxxx ¼ ð�18u�1 þ 24u�2 � 14u�3 þ 3u�4 þ 5u0Þ=12;
uxxxx ¼ ð�4u�1 þ 6u�2 � 4u�3 þ u�4 þ u0Þ=24:

ð17Þ
The stencil S2 gives
ux ¼ ð�192u�1 þ 66u�2 � 11u�3 þ 110u0 þ 27u1Þ=120;
uxx ¼ ð10u�1 þ 12u�2 � 3u�3 � 44u0 þ 25u1Þ=56;
uxxx ¼ ð12u�1 � 6u�2 þ u�3 � 10u0 þ 3u1Þ=12;
uxxxx ¼ ð6u�1 � 4u�2 þ u�3 � 4u0 þ u1Þ=24:

ð18Þ
The stencil S3 gives
ux ¼ ð�82u�1 þ 11u�2 þ 82u1 � 11u2Þ=120;
uxx ¼ ð40u�1 � 3u�2 � 74u0 þ 40u1 � 3u2Þ=56;
uxxx ¼ ð2u�1 � u�2 � 2u1 þ u2Þ=12;
uxxxx ¼ ð�4u�1 þ u�2 þ 6u0 � 4u1 þ u2Þ=24:

ð19Þ
The stencil S4 gives
ux ¼ ð�27u�1 � 110u0 þ 192u1 � 66u2 þ 11u3Þ=120;
uxx ¼ ð25u�1 � 44u0 þ 10u1 þ 12u2 � 3u3Þ=56;
uxxx ¼ ð�3u�1 þ 10u0 � 12u1 þ 6u2 � u3Þ=12;
uxxxx ¼ ðu�1 � 4u0 þ 6u1 � 4u2 þ u3Þ=24:

ð20Þ
The stencil S5 gives
ux ¼ ð�245u0 þ 462u1 � 336u2 þ 146u3 � 27u4Þ=120;
uxx ¼ ð81u0 � 240u1 þ 262u2 � 128u3 þ 25u4Þ=56;
uxxx ¼ ð�5u0 þ 18u1 � 24u2 þ 14u3 � 3u4Þ=12;
uxxxx ¼ ðu0 � 4u1 þ 6u2 � 4u3 þ u4Þ=24:

ð21Þ
The smoothness measure for each of the five stencils can then be written as
IS ¼ ðux þ uxxx=10Þ2 þ 13
3

uxx þ
123
455

uxxxx

� �2

þ 781
20

u2
xxx þ

1421461
2275

u2
xxxx: ð22Þ
Eq. (22) makes the positivity of the smoothness measure very apparent.

2.2. WENO formulation for the cross-terms

Notice that a majority of the terms in Eq. (4) can be evaluated by dimension-by-dimension limiting. Balsara et al. [7]
therefore realized that once those terms have been obtained, the remaining cross-terms can be gathered quite efficiently
by invoking smaller stencils. While this process is not generally extensible to all orders, it also yields an efficient strategy
on structured meshes up to fourth order. In this section we catalogue a strategy for obtaining the cross-terms in Eq. (4) that
is even more efficient than the one in Balsara et al. [7] by virtue of the fact that it uses smaller stencils to gather up the cross-
terms.

2.2.1. Third order reconstruction of the cross-terms
Consider a sub-set of the full polynomial in Eq. (4) given by
uðx; y; zÞ ¼ u0;0 þ uxP1ðxÞ þ uyP1ðyÞ þ uxxP2ðxÞ þ uyyP2ðyÞ þ uxyP1ðxÞP1ðyÞ: ð23Þ
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All the modes in Eq. (23) except for the cross-term uxy can be obtained by using the dimension-by-dimension reconstruction
catalogued in the previous Sub-Section. Thus the modes ux,uy, uxx and uyy as well as the zone-averaged value u0,0 are all
known in the zone of interest, which we label with a two-index subscript ‘‘0,0”. Four possible evaluations of the uxy term
can then be obtained by taking all the known moments in the zone ‘‘0,0” and including any one of the four zone averaged
values u1,1, u�1,1, u1,�1 and u�1, �1 from the zones that lie along the diagonals of the zone of interest. We catalogue the four
possible evaluations of the cross-term uxy below:
uxy ¼ u1;1 � u0;0 � ux � uy � uxx � uyy

uxy ¼ �u1;�1 þ u0;0 þ ux � uy þ uxx þ uyy

uxy ¼ �u�1;1 þ u0;0 � ux þ uy þ uxx þ uyy

uxy ¼ u�1;�1 � u0;0 þ ux þ uy � uxx � uyy:

ð24Þ
The smoothness measure for each of those stencils is given by
IS ¼ 4u2
xx þ 4u2

yy þ u2
xy ð25Þ
and can be used in the usual way to obtain a non-linearly weighted value for uxy. By viewing the problem in the yz-plane and
the xz-plane it is possible to use the formulae developed here to obtain uyz and uxz, respectively. This completes our descrip-
tion of third order WENO interpolation on structured meshes.

2.2.2. Fourth order reconstruction of the cross-terms
Consider a sub-set of the full polynomial in Eq. (4) given by
uðx; y; zÞ ¼ u0;0 þ uxP1ðxÞ þ uyP1ðyÞ þ uxxP2ðxÞ þ uyyP2ðyÞ þ uxyP1ðxÞP1ðyÞ þ uxxxP3ðxÞ þ uyyyP3ðyÞ
þ uxxyP2ðxÞP1ðyÞ þ uxyyP1ðxÞP2ðyÞ: ð26Þ
All the modes in Eq. (26) except for the cross-terms uxy, uxxy and uxyy can be obtained by using the dimension-by-dimension
reconstruction catalogued in the previous Sub-Section. Thus the modes ux, uy, uxx, uyy, uxxx and uyyy as well as the zone-aver-
aged value u0,0 are all known in the zone of interest, which we label with a two-index subscript ‘‘0,0”. Fig. 1 shows us five
possible stencils that can each be used to evaluate the uxy,uxxy and uxyy cross-terms. The central stencil was added for sta-
bility reasons and has a linear weight that is hundred times larger than the linear weights of the other four directionally-
biased stencils. Our choice of five stencils in Fig. 1 gives us five possible evaluations of the cross-terms uxy, uxxy and uxyy

which we catalogue below:
For stencil S1 we obtain
uxy ¼ ð60u1;1 � 10u1;2 � 10u2;1 � 40u0;0 � 30ux � 30uy � 10uxx � 10uyy þ 27uxxx þ 27uyyyÞ=20
uxxy ¼ ð�20u1;1 þ 10u2;1 þ 10u0;0 þ 10uy � 20uxx þ 10uyy � 60uxxx þ 11uyyyÞ=20
uxyy ¼ ð�20u1;1 þ 10u1;2 þ 10u0;0 þ 10ux þ 10uxx � 20uyy þ 11uxxx � 60uyyyÞ=20:

ð27Þ
For stencil S2 we obtain
uxy ¼ ð�60u�1;1 þ 10u�1;2 þ 10u�2;1 þ 40u0;0 � 30ux þ 30uy þ 10uxx þ 10uyy þ 27uxxx � 27uyyyÞ=20
uxxy ¼ ð�20u�1;1 þ 10u�2;1 þ 10u0;0 þ 10uy � 20uxx þ 10uyy þ 60uxxx þ 11uyyyÞ=20
uxyy ¼ ð20u�1;1 � 10u�1;2 � 10u0;0 þ 10ux � 10uxx þ 20uyy þ 11uxxx þ 60uyyyÞ=20:

ð28Þ
For stencil S3 we obtain
uxy ¼ ð�60u1;�1 þ 10u1;�2 þ 10u2;�1 þ 40u0;0 þ 30ux � 30uy þ 10uxx þ 10uyy � 27uxxx þ 27uyyyÞ=20
uxxy ¼ ð20u1;�1 � 10u2;�1 � 10u0;0 þ 10uy þ 20uxx � 10uyy þ 60uxxx þ 11uyyyÞ=20
uxyy ¼ ð�20u1;�1 þ 10u1;�2 þ 10u0;0 þ 10ux þ 10uxx � 20uyy þ 11uxxx þ 60uyyyÞ=20:

ð29Þ
For stencil S4 we obtain
uxy ¼ ð60u�1;�1 � 10u�2;�1 � 10u�1;�2 � 40u0;0 þ 30ux þ 30uy � 10uxx � 10uyy � 27uxxx � 27uyyyÞ=20
uxxy ¼ ð20u�1;�1 � 10u�2;�1 � 10u0;0 þ 10uy þ 20uxx � 10uyy � 60uxxx þ 11uyyyÞ=20
uxyy ¼ ð20u�1;�1 � 10u�1;�2 � 10u0;0 þ 10ux � 10uxx þ 20uyy þ 11uxxx � 60uyyyÞ=20:

ð30Þ
For the central stencil S5 we obtain
uxy ¼ ðu�1;�1 � u�1;1 � u1;�1 þ u1;1Þ=4
uxxy ¼ ð�5u�1;�1 þ 5u�1;1 � 5u1;�1 þ 5u1;1 � 22uyyy � 20uyÞ=20
uxyy ¼ ð�5u�1;�1 � 5u�1;1 þ 5u1;�1 þ 5u1;1 � 22uxxx � 20uxÞ=20:

ð31Þ



Fig. 1. The five stencils that are used for evaluating the cross-terms in the fourth order WENO reconstruction.
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The smoothness measure for each of the uxy terms in Eqs. (27)–(31) is obtained by taking the square of all possible second
derivatives of Eq. (26) and integrating them over the zone of interest, see Balsara et al. [7]. It is given by
IS ¼ 3 u2
xxx þ u2

yyy

� �
þ 4 u2

xx þ u2
yy

� �
þ u2

xy þ
2
3

u2
xxy þ u2

xyy

� �
: ð32Þ
The smoothness measure for each of the uxxy and uxyy terms in Eqs. (27)–(31) is obtained by taking the square of all possible
third derivatives of Eq. (26) and integrating them over the zone of interest, see Balsara et al. [7]. It is given by
IS ¼ 36 u2
xxx þ u2

yyy

� �
þ 4 u2

xxy þ u2
xyy

� �
: ð33Þ
Both smoothness measures can be used in the usual way to obtain a non-linearly weighted value for uxy or uxxy and uxyy,
respectively. It is also acceptable to sum Eqs. (32) and (33) to obtain a single smoothness measure for all the cross-terms.
By viewing the problem in the yz-plane and the xz-plane it is possible to use the formulae developed here to obtain uyz, uyyz,
uyzz, uxz, uxxz and uxzz.

The remaining uxyz term in Eq. (4) can now be obtained using a strategy that is similar to the one used for obtaining the
uxy cross-term at third order. Instead of the four stencils using diagonal zones in the plane we build the eight stencils using
the diagonal zones in space. Thus for each of the eight stencils we use one of the values in the set {u1,1,1,u�1,1,1,u1,�1,1,
u1,1,�1,u�1,�1,1,u�1,1,�1,u1,�1,�1,u�1,�1,�1} to get uxyz in the element of interest indexed by ‘‘0,0,0”.

For stencil S1 we obtain
uxyz ¼ u1;1;1 �
11
10

uzzz � uxzz � uzz � uyzz � uyyz � uxxz � uxz � uz � uyz � uyy �
11
10

uyyy � uxyy � uxy � uxxy � uy � ux

� u0;0;0 �
11
10

uxxx � uxx: ð34Þ
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For stencil S2 we obtain
uxyz ¼ �u�1;1;1 þ
11
10

uzzz � uxzz þ uzz þ uyzz þ uyyz þ uxxz � uxz þ uz þ uyz þ uyy þ
11
10

uyyy � uxyy � uxy þ uxxy þ uy

� ux þ u0;0;0 �
11
10

uxxx þ uxx: ð35Þ
For stencil S3 we obtain
uxyz ¼ �u1;�1;1 þ
11
10

uzzz þ uxzz þ uzz � uyzz þ uyyz þ uxxz þ uxz þ uz � uyz þ uyy �
11
10

uyyy þ uxyy � uxy � uxxy � uy

þ ux þ u0;0;0 þ
11
10

uxxx þ uxx: ð36Þ
For stencil S4 we obtain
uxyz ¼ �u1;1;�1 �
11
10

uzzz þ uxzz þ uzz þ uyzz � uyyz � uxxz � uxz � uz � uyz þ uyy þ
11
10

uyyy þ uxyy þ uxy þ uxxy þ uy

þ ux þ u0;0;0 þ
11
10

uxxx þ uxx: ð37Þ
For stencil S5 we obtain
uxyz ¼ u�1;�1;1 �
11
10

uzzz þ uxzz � uzz þ uyzz � uyyz � uxxz þ uxz � uz þ uyz � uyy þ
11
10

uyyy þ uxyy � uxy þ uxxy þ uy

þ ux � u0;0;0 þ
11
10

uxxx � uxx: ð38Þ
For stencil S6 we obtain
uxyz ¼ u�1;1;�1 þ
11
10

uzzz þ uxzz � uzz � uyzz þ uyyz þ uxxz � uxz þ uz þ uyz � uyy �
11
10

uyyy þ uxyy þ uxy � uxxy � uy

þ ux � u0;0;0 þ
11
10

uxxx � uxx: ð39Þ
For stencil S7 we obtain
uxyz ¼ u1;�1;�1 þ
11
10

uzzz � uxzz � uzz þ uyzz þ uyyz þ uxxz þ uxz þ uz � uyz � uyy þ
11
10

uyyy � uxyy þ uxy þ uxxy þ uy

� ux � u0;0;0 �
11
10

uxxx � uxx: ð40Þ
For stencil S8 we obtain
uxyz ¼ �u�1;�1;�1 �
11
10

uzzz � uxzz þ uzz � uyzz � uyyz � uxxz þ uxz � uz þ uyz þ uyy �
11
10

uyyy � uxyy þ uxy � uxxy

� uy � ux þ u0;0;0 �
11
10

uxxx þ uxx: ð41Þ
The smoothness measure for each of the eight stencils is given by
IS ¼ 36ðu2
xxx þ u2

yyy þ u2
zzzÞ þ 4ðu2

xxy þ u2
xxz þ u2

xyy þ u2
yyz þ u2

xzz þ u2
yzzÞ þ u2

xyz: ð42Þ
The smoothness measures can be used in the usual way to obtain a non-linearly weighted value for uxyz. This completes our
description of fourth order WENO interpolation on structured meshes.

2.3. Cataloguing divergence-free reconstruction of the magnetic field

Divergence-free reconstruction for MHD has been detailed in Balsara [3,5] for second order schemes and in Balsara [6] for
higher order schemes. We therefore present only as much detail here as is needed for understanding ADER-WENO schemes
for MHD. Consequently, the method consists of realizing that the moments of the face-centered magnetic field components
can be obtained by using the reconstruction techniques given in the previous two Sub-Sections. Assuming a zone to be a unit
cube, the x-components of the magnetic field in the upper and lower x-faces of a zone are then given by
Bxðx ¼ �1=2; y; zÞ ¼ Bx�
0 þ Bx�

y P1ðyÞ þ Bx�
z P1ðzÞ  second order

þ Bx�
yy P2ðyÞ þ Bx�

yz P1ðyÞP1ðzÞ þ Bx�
zz P2ðzÞ  third order

þ Bx�
yyyP3ðyÞ þ Bx�

yyzP2ðyÞP1ðzÞ þ Bx�
yzzP1ðyÞP2ðzÞ þ Bx�

zzzP3ðzÞ  fourth order: ð43Þ
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The arrows in Eq. (43) show us the minimum sub-set of terms that are needed for achieving the desired order of accuracy.
Thus for a second order scheme we would only use the first line in Eq. (43). For a third order scheme we would need the first
and second lines in Eq. (43). For a fourth order scheme we would use all three lines in Eq. (43). Similar expressions for the y
and z-components of the field in the appropriate zone faces can be written as
Byðx; y ¼ �1=2; zÞ ¼ By�
0 þ By�

x P1ðxÞ þ By�
z P1ðzÞ  second order

þ By�
xx P2ðxÞ þ By�

xz P1ðxÞP1ðzÞ þ By�
zz P2ðzÞ  third order

þ By�
xxxP3ðxÞ þ By�

xxzP2ðxÞP1ðzÞ þ By�
xzzP1ðxÞP2ðzÞ þ By�

zzzP3ðzÞ  fourth order ð44Þ
and
Bzðx; y; z ¼ �1=2Þ ¼ Bz�
0 þ Bz�

x P1ðxÞ þ Bz�
y P1ðzÞ  second order

þ Bz�
xx P2ðxÞ þ Bz�

xy P1ðxÞP1ðyÞ þ Bz�
yy P2ðyÞ  third order

þ Bz�
xxxP3ðxÞ þ Bz�

xxyP2ðxÞP1ðyÞ þ Bz�
xyyP1ðxÞP2ðyÞ þ Bz�

yyyP3ðyÞ  fourth order: ð45Þ
The moments in Eq. (43) can be obtained by limiting the x-component of the magnetic field in the yz-plane. Similarly, the
moments in Eqs. (44) and (45) can be obtained by limiting in the xz-plane and xy-plane respectively. The WENO limiting
strategies catalogued in the previous two Sub-Sections can be used to carry out the limiting. To reconstruct the field in
the interior of the zone we pick the following functional forms for the fields:
Bxðx; y; zÞ ¼ a0 þ axP1ðxÞ þ ayP1ðyÞ þ azP1ðzÞ
þ axxP2ðxÞ þ axyP1ðxÞP1ðyÞ þ axzP1ðxÞP1ðzÞ  second order
þ ayyP2ðyÞ þ axyyP1ðxÞP2ðyÞ þ azzP2ðzÞ þ axzzP1ðxÞP2ðzÞ þ ayzP1ðyÞP1ðzÞ þ axyzP1ðxÞP1ðyÞP1ðzÞ
þ axxxP3ðxÞ þ axxyP2ðxÞP1ðyÞ þ axxzP2ðxÞP1ðzÞ  third order
þ ayyyP3ðyÞ þ axyyyP1ðxÞP3ðyÞ þ ayyzP2ðyÞP1ðzÞ þ axyyzP1ðxÞP2ðyÞP1ðzÞ
þ ayzzP1ðyÞP2ðzÞ þ axyzzP1ðxÞP1ðyÞP2ðzÞ þ azzzP3ðzÞ þ axzzzP1ðxÞP3ðzÞ
þ axxxxP4ðxÞ þ axxxyP3ðxÞP1ðyÞ þ axxxzP3ðxÞP1ðzÞ
þ axxyyP2ðxÞP2ðyÞ þ axxzzP2ðxÞP2ðzÞ  fourth order; ð46Þ

Byðx; y; zÞ ¼ b0 þ bxP1ðxÞ þ byP1ðyÞ þ bzP1ðzÞ
þ byyP2ðyÞ þ bxyP1ðxÞP1ðyÞ þ byzP1ðyÞP1ðzÞ  second order
þ bxxP2ðxÞ þ bxxyP2ðxÞP1ðyÞ þ bzzP2ðzÞ þ byzzP1ðyÞP2ðzÞ þ bxzP1ðxÞP1ðzÞ þ bxyzP1ðxÞP1ðyÞP1ðzÞ
þ byyyP3ðyÞ þ bxyyP1ðxÞP2ðyÞ þ byyzP2ðyÞP1ðzÞ  third order
þ bxxxP3ðxÞ þ bxxxyP3ðxÞP1ðyÞ þ bxxzP2ðxÞP1ðzÞ þ bxxyzP2ðxÞP1ðyÞP1ðzÞ
þ bxzzP1ðxÞP2ðzÞ þ bxyzzP1ðxÞP1ðyÞP2ðzÞ þ bzzzP3ðzÞ þ byzzzP1ðyÞP3ðzÞ
þ byyyyP4ðyÞ þ bxyyyP1ðxÞP3ðyÞ þ byyyzP3ðyÞP1ðzÞ
þ bxxyyP2ðxÞP2ðyÞ þ byyzzP2ðyÞP2ðzÞ  fourth order ð47Þ
and
Bzðx; y; zÞ ¼ c0 þ cxP1ðxÞ þ cyP1ðyÞ þ czP1ðzÞ
þ czzP2ðzÞ þ cxzP1ðxÞP1ðzÞ þ cyzP1ðyÞP1ðzÞ  second order
þ cxxP2ðxÞ þ cxxzP2ðxÞP1ðzÞ þ cyyP2ðyÞ þ cyyzP2ðyÞP1ðzÞ þ cxyP1ðxÞP1ðyÞ þ cxyzP1ðxÞP1ðyÞP1ðzÞ
þ czzzP3ðzÞ þ cxzzP1ðxÞP2ðzÞ þ cyzzP1ðyÞP2ðzÞ  third order
þ cxxxP3ðxÞ þ cxxxzP3ðxÞP1ðzÞ þ cxxyP2ðxÞP1ðyÞ þ cxxyzP2ðxÞP1ðyÞP1ðzÞ
þ cxyyP1ðxÞP2ðyÞ þ cxyyzP1ðxÞP2ðyÞP1ðzÞ þ cyyyP3ðyÞ þ cyyyzP3ðyÞP1ðzÞ
þ czzzzP4ðzÞ þ cxzzzP1ðxÞP3ðzÞ þ cyzzzP1ðyÞP3ðzÞ
þ cxxzzP2ðxÞP2ðzÞ þ cyyzzP2ðyÞP2ðzÞ  fourth order ð48Þ
The rationale for picking this set of moments follows from Balsara [3]. As shown in Balsara [6], Eqs. (43)–(45) can be used
along with the divergence-free condition in Eq. (2) to completely specify the coefficients in Eqs. (46)–(48). Observe that Eqs.
(43)–(45) only hold in the zone-faces while Eqs. (46)–(48) are divergence-free to all orders and hold at all points within the
zone being considered. As a result, our evaluation of the coefficients in Eqs. (46)–(48) reconstructs the magnetic field in the
whole zone.

It is worthwhile to consider Eq. (46) at third order to make two important points. First, notice that all the linear and qua-
dratic variations that one would require for the third order accurate reconstruction within the unit cube are all present. As a
result, although we started with just the facial moments in Eqs. (43)–(45), the divergence-free reconstruction has enabled us
to fully specify all the requisite moments for third order accuracy within the unit cube’s interior. This observation extends to
all orders. Second, notice that the coefficients axyy, axzz, axyz, axxx, axxy and axxz correspond to variations that are only needed
for fourth order accuracy and yet they are present in the third order reconstruction. Their presence is mandated by the
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divergence-free condition, not by accuracy conditions. As a result, these terms do not need to participate in the third order
ADER time-evolution. Their contribution does, however, need to be included in the flux evaluation in the ADER scheme as
well as in the construction of Riemann solvers at zone boundaries. We therefore say that these coefficients provide non-evo-
lutionary terms in the ADER update. Their contribution needs to be included wherever possible but there are no time-evolv-
ing terms associated with them in the ADER formulation.

3. ADER-CG formulation

In contrast to the classical ADER schemes of Titarev and Toro [55] and [56], which needed many analytical algebraic
manipulations due to the underlying Cauchy–Kovalewski procedure, the new formulation of ADER schemes recently pro-
posed in Dumbser et al. [26] is based on a local weak formulation of the governing PDE in space–time and only needs flux
evaluations at point values. These new ADER schemes rely on an iterative convergence to the actual space–time represen-
tation of the solution within each zone. In Section 3.1 we provide the general formulation of ADER-CG schemes (where CG
stands for continuous Galerkin representation in space and time) and describe one iteration of the ADER scheme. In Section
3.2 we describe in detail the implementation of the third order ADER-CG scheme in an effort to make the ADER method eas-
ily accessible to all readers. In Appendices B and C we provide the most essential formulae that are needed for making imple-
mentations of the second and fourth order ADER-CG schemes, respectively.

3.1. General formulation of ADER-CG schemes for structured meshes

Say we want to evolve the nonlinear time-dependent hyperbolic system of conservation laws given by
oU
ot
þ oF

ox
þ oG

oy
þ oH

oz
¼ S; ð49Þ
where u is an n-component vector of conserved variables and F = F(U), G = G(U) and H = H(U) are flux vectors and S = S(U) is a
non-stiff source term. We wish to take a time step of size Dt on a mesh having zones of size Dx, Dy and Dz in each of the
three directions. Each zone can be mapped to a unit cube in space. Since ADER schemes operate in space and time, we con-
sider a four dimensional reference element in space–time given by [�1/2,1/2] � [�1/2,1/2] � [�1/2,1/2] � [0,1] where the
first three coordinates span the unit cube and the fourth coordinate represents the time axis. In this space–time element we
set up the coordinates (n,g,f,s) and make the transcriptions u = U, f = DtF/Dx, g = DtG/Dy, h = DtH/Dz and s = DtS. This allows
us to write Eq. (49) in the reference element as
ou
os
þ of

on
þ og

og
þ oh

of
¼ s: ð50Þ
The ADER scheme that we describe here is a modal variant of the ADER scheme with a continuous Galerkin representation in
time (also known as ADER-CG) described in Dumbser et al. [26]. Such ADER-CG schemes are very efficient because they min-
imize the number of flux evaluations though they have the drawback that they are not well-suited for handling stiff source
terms. We now specify a set of L basis functions {hl = hl(n,g,f,s), l = 1,L} in the reference element. For a general Galerkin for-
mulation, any reasonable set of basis functions would suffice. For an ADER-CG scheme we make the further requirement that
the first LS elements in the set of basis functions only have a spatial dependence and lack any dependence on time s. The
solution vector u can now be represented in this basis space as
uðn;g; f; sÞ ¼
XL

l¼1

ûlhlðn;g; f; sÞ; ð51Þ
where û � ðû1; . . . ; ûLS ; ûLSþ1; . . . ; ûLÞT is a vector of modes. The first LS elements of this vector of modes lack time-dependence so
that only the last L � LS of these modes carry the time-evolution of the solution u. Equations similar to Eq. (51) can be formu-
lated for the flux components as well as the source terms. Thus the n,g and f-directional fluxes in space–time reference ele-
ment are, therefore, completely specified by providing the modal vectors given by f̂ � ðf̂ 1; . . . ; f̂ LS ; f̂ LSþ1; . . . ; f̂ LÞT ;
ĝ � ðĝ1; . . . ; ĝLS ; ĝLSþ1; . . . ; ĝLÞT and ĥ � ðĥ1; . . . ; ĥLS ; ĥLSþ1; . . . ; ĥLÞT , respectively. Likewise, the source terms are specified by pro-
viding ŝ � ðŝ1; . . . ; ŝLS ; ŝLSþ1; . . . ; ŝLÞT . These flux terms and source terms can be obtained by using û from the previous iteration.
The method for doing so is illustrated at third order in the next Sub-Section. The ADER-CG formulation consists of making a
further essential simplification that at s = 0 the solution u(n,g,f,s) is continuous with the initial condition w (n,g,f). This sim-
plification is advantageous because one needs to evaluate f̂ l; ĝl; ĥl and ŝl for l = 1, . . . ,LS only once at s = 0, resulting in a sub-
stantial savings in computational complexity. Thus if w is written in a modal space as
wðn;g; fÞ ¼
XLs

l¼1

ŵlhlðn;g; f; s ¼ 0Þ ð52Þ
then the ADER-CG simplification consists of asserting that ûl ¼ ŵl for l = 1, . . . ,LS. Notice that this assertion simultaneously
relinquishes the prospect of obtaining a weak formulation in time as well as the scheme’s ability to handle stiff source terms.
(In Balsara et al. [8] and Dumbser et al. [30] we present ADER schemes that retain the weak formulation in time and can,
therefore, handle stiff source terms. We refer to those schmes as ADER-DG to show their discontinuous Galerkin aspect.)
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Applying the Galerkin approach to Eq. (50) then gives us
hj;
ohl

os

� �
ûl þ hj;

ohl

on

� �
f̂ l þ hj;

ohl

og

� �
ĝl þ hj;

ohl

of

� �
ĥl ¼ hhj; hliŝl: ð53Þ
The angled brackets in the above equation denote space–time integration over the reference element. Eq. (53) can then be
written as
Ksûþ Kn f̂ þ Kgĝ þ Kfĥ ¼ Mŝ; ð54Þ

where, in keeping with the usual terminology of Galerkin schemes, M is the mass matrix, Ks is the time-stiffness matrix and
Kn, Kg and Kf are the flux-stiffness matrices. The (j, l)th elements of these matrices can be made explicit as follows:
Ks;j;l ¼
ohj

os ; hl

� �
; Kn;j;l ¼ hj;

ohl

on

� �
; Kg;j;l ¼ hj;

ohl

og

� �
; Kf;j;l ¼ hj;

ohl

of

� �
; Mj;l ¼ hhj; hli: ð55Þ
Notice from the structure of the vector û that only the last L–LS components are unknowns to be obtained from the ADER-CG
iteration. We thus write û as û ¼ ðû0; û1ÞT where û0 has the first LS components of û and û1 has the last L � LS components of û.
A similar split can be effected for f̂ ; ĝ; ĥ and ŝ. The mass matrix and the stiffness matrices can now be written as
M ¼ M00 M01

M10 M11

" #
;Ka ¼

K00
a K01

a

K10
a K11

a

" #
; ð56Þ
where a can be n, g, f or s in the above equation. The sub-matrices M00, M01, M10 and M11 in Eq. (56) have dimension LS � LS,
LS � (L � LS), (L � LS) � LS and (L � LS) � (L � LS), respectively. Only the last L-LS components of Eq. (54) are useful and yield
the equation
û1 þ bK n f̂ 1 þ bK gĝ1 þ bK fĥ1 ¼ bMŝ1 þ bM0 ŝ0 � bK 0
n f̂ 0 � bK 0

gĝ0 � bK 0
f ĥ0; ð57Þ
where the matrices in the above equation are given by
bK n ¼ ðK11
s Þ
�1K11

n ;
bK g ¼ ðK11

s Þ
�1K11

g ;
bK f ¼ ðK11

s Þ
�1K11

f ;
bM ¼ ðK11

s Þ
�1M11;bK 0

n ¼ ðK
11
s Þ
�1K10

n ;
bK 0

g ¼ ðK
11
s Þ
�1K10

g ;
bK 0

f ¼ ðK
11
s Þ
�1K10

f ;
bM0 ¼ ðK11

s Þ
�1M10:

ð58Þ
Thus a specification of the matrices in Eq. (58) along with Eq. (57) furnishes the entire ADER-CG scheme. In the next Sub-
Section we will explicitly show the third order ADER-CG scheme that results from using these matrices.

Notice that the matrices bM and bK a are square matrices with a rank of L � LS while the matrices bM0 and bK 0
a are rectangular

with a dimension (L-LS) � LS. It is interesting to remark that while the K10
a and K11

a matrices in Eq. (58) are non-sparse, the
matrices bK a and bK 0

a are sparse at all orders. As a result, the form presented in Eq. (57) is also the one in which the equations
are most elegant. This is true both for the tensor product basis functions that are used for logically rectilinear meshes and
also for the Dubiner [25] basis functions that are used for unstructured meshes. At an intuitive level, the sparsity ofbK n; bK gandbK f stems from the fact that in Legendre basis as well as in Dubiner basis the derivative operator only couples
one basis function to two other basis functions.

In an ADER-CG scheme Eq. (57) is made to converge via iteration. Our experience has shown that we only require ‘‘M”
iterations of Eq. (57) to achieve the requisite accuracy of an Mth order scheme. Dumbser et al [26] provide an intuitive expla-
nation, based on contractive mappings, for this rapid convergence. There also exists formal theory based on the Picard iter-
ation which supports the claim that ‘‘M” iterations are adequate for an Mth order scheme. As a result, while the ADER-CG
schemes do iterate on Eq. (57), the iteration is not very expensive. Even the most stringent test problems presented here
were always run with the minimum requisite number of ADER-CG iterations.

3.2. Implementation of the ADER-CG scheme at third order

We start with the initial condition at s = 0 which is given by expressing w(n,g,f) in terms of the LS = 10 spatial basis func-
tions as follows:
wðn;g; fÞ ¼ ŵ1P0ðnÞP0ðgÞP0ðfÞ þ ŵ2P1ðnÞP0ðgÞP0ðfÞ þ ŵ3P0ðnÞP1ðgÞP0ðfÞ þ ŵ4P0ðnÞP0ðgÞP1ðfÞ
þ ŵ5P2ðnÞP0ðgÞP0ðfÞ þ ŵ6P0ðnÞP2ðgÞP0ðfÞ þ ŵ7P0ðnÞP0ðgÞP2ðfÞ þ ŵ8P1ðnÞP1ðgÞP0ðfÞ
þ ŵ9P0ðnÞP1ðgÞP1ðfÞ þ ŵ10P1ðnÞP0ðgÞP1ðfÞ ð59Þ
We can now define a space–time solution u(n,g,f,s) in the reference space–time element by forming tensor products of the
spatial basis set with the temporal basis set. The temporal basis set has to be specially chosen in an ADER-CG scheme so that
the first LS basis functions match up with those in Eq. (59). Thus our temporal basis functions are taken to be
Q0ðsÞ ¼ 1; Q 1ðsÞ ¼ s; Q 2ðsÞ ¼ s2; Q 3ðsÞ ¼ s3 ð60Þ

The first three basis functions in Eq. (60) are needed for the third order scheme; the last basis function in Eq. (60) is only needed
for fourth order schemes. To obtain full third order accuracy in space–time we use a total of L = 15 basis functions. The con-
served variables u(n,g,f,s) can be expressed in terms of the degrees of freedom, i.e. the modes, and the basis functions as
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uðn;g; f; sÞ ¼ ŵ1P0ðnÞP0ðgÞP0ðfÞQ0ðsÞ þ ŵ2P1ðnÞP0ðgÞP0ðfÞQ0ðsÞ þ ŵ3P0ðnÞP1ðgÞP0ðfÞQ0ðsÞ
þ ŵ4P0ðnÞP0ðgÞP1ðfÞQ0ðsÞ þ ŵ5P2ðnÞP0ðgÞP0ðfÞQ0ðsÞ þ ŵ6P0ðnÞP2ðgÞP0ðfÞQ0ðsÞ
þ ŵ7P0ðnÞP0ðgÞP2ðfÞQ0ðsÞ þ ŵ8P1ðnÞP1ðgÞP0ðfÞQ0ðsÞ þ ŵ9P0ðnÞP1ðgÞP1ðfÞQ0ðsÞ
þ ŵ10P1ðnÞP0ðgÞP1ðfÞQ 0ðsÞ þ û11P0ðnÞP0ðgÞP0ðfÞQ1ðsÞ þ û12P0ðnÞP0ðgÞP0ðfÞQ2ðsÞ
þ û13P1ðnÞP0ðgÞP0ðfÞQ1ðsÞ þ û14P0ðnÞP1ðgÞP0ðfÞQ 1ðsÞ þ û15P0ðnÞP0ðgÞP1ðfÞQ1ðsÞ ð61Þ
Notice that Eq. (61) already incorporates the essential simplification that is built into an ADER-CG scheme because we have
set ûl ¼ ŵl for l = 1, .. ,LS.

While it is always possible to explicitly write down all the matrices from Eq. (58), it is much easier to write down the
iterative scheme that they give rise to. The resultant ADER-CG iteration at third order is therefore given by
û11 ¼ �f̂ 2 � ĝ3 � ĥ4 þ ŝ1 �
3

10
ŝ12

û12 ¼ �
f̂ 13

2
� ĝ14

2
� ĥ15

2
þ ŝ11

2
þ 3

5
ŝ12

û13 ¼ �2f̂ 5 � ĝ8 � ĥ10 þ ŝ2 þ
2
3

ŝ13

û14 ¼ �f̂ 8 � 2ĝ6 � ĥ9 þ ŝ3 þ
2
3

ŝ14

û15 ¼ �f̂ 10 � ĝ9 � 2ĥ7 þ ŝ4 þ
2
3

ŝ15

ð62Þ
The set of equations provided in Eq. (62) completely describe one iteration the ADER-CG scheme at third order on structured
meshes.

Now that the ADER-CG iteration has been described in Eq. (62), we only need to specify a strategy for obtaining the vec-
tors f̂ ; ĝ; ĥ and ŝ from the vector û. To accomplish that, we establish a set of nodal points in space–time on the reference ele-
ment. Several choices of nodal points are possible. Realize that we have L modes so that we could define a minimal set of L
nodal points that allow us to make a one-to-one transcription from the nodal space to the modal space. This would yield the
most economical ADER-CG scheme. Choosing a tensor product set of Gaussian quadrature points might yield the most accu-
rate transcription from nodal to modal space. It would also be computationally expensive because for an Mth order scheme,
this choice would call for M4 quadrature points. We prefer an intermediate strategy where we choose a set of Ln set of nodal
points where Ln is slightly larger than L. The node placement in this choice has the special property that it yields compact,
finite-difference like formulae for transcribing from nodal space to modal space. For third order we have Ln = 22 and the
nodes are chosen to have geometric symmetries which yield expected cancellations in problems that have a great deal of
symmetry. We have found such symmetrical node placements even for second and fourth order ADER-CG. For third order
ADER-CG the Ln nodes are given by the ordered set
fð0;0;0;0Þ; ð1=2;0; 0;0Þ; ð�1=2;0; 0;0Þ; ð0;1=2;0;0Þ; ð0;�1=2;0;0Þ; ð0; 0;1=2; 0Þ; ð0;0;�1=2; 0Þ;
ð1=2;1=2;1=2;0Þ; ð�1=2;1=2;1=2;0Þ; ð1=2;�1=2;1=2;0Þ; ð�1=2;�1=2;1=2;0Þ; ð1=2;1=2;�1=2; 0Þ;
ð�1=2;1=2;�1=2;0Þ; ð1=2;�1=2;�1=2; 0Þ; ð�1=2;�1=2;�1=2;0Þ; ð1=2; 0;0;1=2Þ; ð�1=2;0; 0;1=2Þ;
ð0;1=2;0;1=2Þ; ð0;�1=2;0;1=2Þ; ð0;0;1=2;1=2Þ; ð0; 0;�1=2;1=2Þ; ð0; 0;0;1Þg ð63Þ
Using the ordered set of nodal points we can then define an Ln component vector �u which contains the nodal values of the
conserved variables. The ordering of the components of �u follows that of the nodal points. Note that the first 15 elements of �u
have to be evaluated only once. Using the Ln component vector �u we can now define an an Ln component vector �f which con-
tains the x-directional fluxes from the hyperbolic system in Eq. (50). The ordering of the components of �f also follows that of
the nodal points. As a result the first 15 elements of �f have to be evaluated only once, leading to some of the computational
efficiency of the ADER-CG scheme. The process of obtaining the vector f̂ from the vector �f is just a matter of transcribing from
nodal to modal space and is given below
f̂ 1 ¼ ð�f 2 þ �f 3 þ �f 4 þ �f 5 þ �f 6 þ �f 7Þ=6

f̂ 2 ¼ �f 2 � �f 3

f̂ 3 ¼ �f 4 � �f 5

f̂ 4 ¼ �f 6 � �f 7

f̂ 5 ¼ 2�f 2 � 4�f 1 þ 2�f 3

f̂ 6 ¼ 2�f 4 � 4�f 1 þ 2�f 5

f̂ 7 ¼ 2�f 6 � 4�f 1 þ 2�f 7

f̂ 8 ¼ ð�f 8 � �f 9 � �f 10 þ �f 11 þ �f 12 � �f 13 � �f 14 þ �f 15Þ=2

f̂ 9 ¼ ð�f 8 þ �f 9 � �f 10 � �f 11 � �f 12 � �f 13 þ �f 14 þ �f 15Þ=2

f̂ 10 ¼ ð�f 8 � �f 9 þ �f 10 � �f 11 � �f 12 þ �f 13 � �f 14 þ �f 15Þ=2

ð64Þ
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t̂1 ¼ ð�f 16 þ �f 17 þ �f 18 þ �f 19 þ �f 20 þ �f 21Þ=3� 2f̂ 1

f̂ 11 ¼ 2t̂1 � �f 22 þ �f 1

f̂ 12 ¼ 2t̂1 � 2f̂ 11

f̂ 13 ¼ 2ð�f 16 � �f 17 � �f 2 þ �f 3Þ
f̂ 14 ¼ 2ð�f 18 � �f 19 � �f 4 þ �f 5Þ
f̂ 15 ¼ 2ð�f 20 � �f 21 � �f 6 þ �f 7Þ

ð65Þ
We point out that t̂1 is a temporary variable. Notice from Eq. (64) that the first 10 components of f̂ have to be evaluated only
once and are completely specified by the first fifteen components of �f . The first fifteen components of �f are, in turn, evaluated
only once at s = 0 before starting the ADER-CG iterations. Notice too from Eq. (65) that the last 5 components of f̂ will have to
be re-evaluated in every ADER-CG iteration and only require a re-evaluation of the last seven components of �f at s > 0. This
clear separation between the fluxes that have to be evaluated only once at s = 0 and the much smaller number of fluxes that
have to be evaluated at s > 0 yields even further computational efficiency. A similar approach is followed for the other fluxes
and the source terms in Eq. (50). This completes our description of the ADER-CG scheme at third order.

4. Flux calculation, time-update and a step-by-step description of the ADER-WENO scheme

In Section 4.1 we describe the one-step time update and the flux calculation. This includes the electric field calculation
that is needed for MHD. In Section 4.2 we provide a step-by-step description of the ADER-WENO scheme.

4.1. Flux calculation and time-update

The MHD system can be described in conservation form as shown in Eq. (49) by writing it as
o

ot

q
qvx

qvy

qvz

e
Bx

By

Bz

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
þ o

ox

qvx

qv2
x þ P þ B2=8p� B2

x=4p
qvxvy � BxBy=4p
qvxvz � BxBz=4p

ðeþ P þ B2=8pÞvx � Bxðv � BÞ=4p
0

ðvxBy � vyBxÞ
�ðvzBx � vxBzÞ

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA

þ o

oy

qvy

qvxvy � BxBy=4p
qv2

y þ P þ B2=8p� B2
y=4p

qvyvz � ByBz=4p
ðeþ P þ B2=8pÞvy � Byðv � BÞ=4p

�ðvxBy � vyBxÞ
0

ðvyBz � vzByÞ

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
þ o

oz

qvz

qvxvz � BxBz=4p
qvyvz � ByBz=4p

qv2
z þ P þ B2=8p� B2

z=4p
ðeþ P þ B2=8pÞvz � Bzðv � BÞ=4p

ðvzBx � vxBzÞ
�ðvyBz � vzByÞ

0

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
¼ 0;

ð66Þ
where e = qv2/2 + P/(c � 1) + B2/8p is the total energy and c is the ratio of specific heats. The Euler equations can be obtained
from Eq. (66) by setting the magnetic fields to zero.

The first five components of Eq. (66) follow a straightforward conservation form and their one-step update from a time tn

to a time tn+1 = tn + Dt in a zone labeled by subscripts ‘‘i, j, k” is given by
Unþ1
i;j;k ¼ Un

i;j;k �
Dt
Dx

Fiþ1=2;j;k � Fi�1=2;j;k
� 	

� Dt
Dy

Gi;jþ1=2;k � Gi;j�1=2;k

� �
� Dt

Dz
Hi;j;kþ1=2 � Hi;j;k�1=2
� 	

: ð67Þ
The overbars in Eq. (67) denote suitable averagings as will be detailed below. For Eq. (67) to be a high order update, the fluxes
in Eq. (67) have to be averaged in space and time at the zone faces. These averages have to be obtained using quadratures
having the appropriate accuracy. Traditionally, this has been obtained by solving a large number of Riemann problems at a
large number of quadrature points, see Cockburn and Shu [16]. This makes the time-update very expensive. A substantially
simpler strategy was presented by Dumbser et al. [29] which views the flux at a face as being a linear combination of four
vectors. The four vectors are: (a) the conserved variables to the left of the zone boundary given by UL;i+1/2,j,k(y,z, t) = ui,j,k(n =
1/2,g, f,s), (b) the conserved variables to the right of the zone boundary given by UR;i+1/2,j,k(y,z, t) = ui+1,j,k(n = �1/2,g, f,s), (c)
the flux to the left of the zone boundary given by FL;i+1/2,j,k(y,z, t) = fi,j,k(n = 1/2,g,f,s)D x/Dt and (d) the flux to the right of the
zone boundary given by FR;i+1/2,j,k(y,z,t) = fi+1,j,k(n = �1/2,g,f,s)D x/Dt. Let us illustrate this for the HLL flux at any general point
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on the boundary ‘‘i + 1/2,j,k”. Consider a situation where the fastest left-going and right-going signal speeds at that boundary
are kL and kR respectively. In the usual way, we reset kL = min(kL,0) and kR = max(kR,0). The HLL flux at any general point on
the top x-face of the zone being considered is then given by
Fiþ1=2;j;kðy; z; tÞ ¼
kR

kR � kL


 �
FL;iþ1=2;j;kðy; z; tÞ �

kL

kR � kL


 �
FR;iþ1=2;j;kðy; z; tÞ þ

kRkL

kR � kL


 �
ðUR;iþ1=2;j;kðy; z; tÞ � UL;iþ1=2;j;kðy; z; tÞÞ:

ð68Þ

The flux Fiþ1=2;j;k that is used in Eq. (67) is an average of the flux in Eq. (68) where the averaging process is applied to the
whole zone boundary being considered. The central idea of Dumbser et al. [29] consists of freezing kL and kR to equal their
values evaluated at the space–time barycenters of the face under consideration. As a result, the square brackets in Eq. (68)
also become constants. This is tantamount to assuming that the same dissipation model holds at all space–time points at the
face being considered. With that assumption, Eq. (68) becomes a linear function in the four vectors UL;i+1/2,j,k,UR;i+1/2,j,k,FL;i+1/2,j,k

and FR;i+1/2,j,k. Notice from Eq. (51) as well as its explicit instantiation at third order in Eq. (61) that a space–time averaging of
UL;i+1/2,j,k and UR;i+1/2,j,k is easily done by using the ADER scheme’s space–time representation of u in the two zones that abut
the boundary ‘‘i + 1/2,j,k”. The ADER scheme also provides a space–time representation of the fluxes, making it possible to
obtain the space–time averages of FL;i+1/2,j,k and FR;i+1/2,j,k. With kL and kR frozen, the right hand side of Eq. (68) is a linear
combination of modal basis functions. Consequently, Eq. (68) can be averaged over the upper x-face of the zone ‘‘i,j,k” by
integrating over the limits [�Dy/2,D y/2] � [�Dz/2,Dz/2] � [0,Dt] and dividing the integral by DyDzDt. Please recall that
the non-evolutionary terms in the magnetic field reconstruction (see last paragraph in Section 2.3) also contribute to
UL;i+1/2,j,k, UR;i+1/2,j,k, FL;i+1/2,j,k and FR;i+1/2,j,k. This completes our description of the one-step update for the mass, momentum
and energy densities in Eq. (66).

As first shown by Yee [59], a divergence-free evolution of the magnetic field requires that one has a face-centered rep-
resentation of the magnetic fields that is updated using an edge-centered representation of the electric fields. As shown
by Balsara and Spicer [11], setting E = �v � B shows us that specific components of the fluxes in Eq. (66) are indeed the elec-
tric fields that one seeks. This enables us to use the upwinded fluxes evaluated at the zone edges to obtain those components
of the electric fields, as shown in Balsara [5]. Thus we have a one-step update for the magnetic fields given by
Bnþ1
x;iþ1=2;j;k ¼ Bn

x;iþ1=2;j;k �
Dt

DyDz
DzEz;iþ1=2;jþ1=2;k � DzEz;iþ1=2;j�1=2;k þ DyEy;iþ1=2;j;k�1=2 � DyEy;iþ1=2;j;kþ1=2
� 	

Bnþ1
y;i;j�1=2;k ¼ Bn

y;i;j�1=2;k �
Dt

DxDz
DxEx;i;j�1=2;kþ1=2 � DxEx;i;j�1=2;k�1=2 þ DzEz;i�1=2;j�1=2;k � DzEz;iþ1=2;j�1=2;k
� 	

Bnþ1
z;i;j;kþ1=2 ¼ Bn

z;i;j;kþ1=2 �
Dt

DxDy
DxEx;i;j�1=2;kþ1=2 � DxEx;i;jþ1=2;kþ1=2 þ DyEy;iþ1=2;j;kþ1=2 � DyEy;i�1=2;j;kþ1=2
� 	 ð69Þ
Just as the fluxes in Eq. (67) are space–time averages over the zone faces, the electric fields to be used in Eq. (69) are space–
time averages over the zone edges. As before, the ADER formulation can be used to obtain these averages. Notice that four
faces come together at each zone edge. The Riemann problems that furnish the electric fields at the space–time center of the
edge of interest are solved at space–time points within each face that are closest to the edge center, see Fig. 1 from Balsara
[5]. The actual electric field at each edge is the arithmetic average of the electric field contributions from each of the four
faces that come together at that edge. This completes our description of the one-step update for the magnetic fields in
Eq. (1).

Balsara and Spicer [11] realized that the correct amount of upwinding for the electric fields in Eq. (69) could be a delicate
issue, a topic that has also been addressed by Londrillo and DelZanna [43]. Notice that the electric fields are picked out by
examining the last three components of the flux in Eq. (68). When HLL fluxes are used, an extremely simple solution to this
issue is obtained by doubling the value of the third square bracket in Eq. (68). Such a doubling should only be done when
using Eq. (68) to evaluate electric fields and, that too, only when kL < 0 < kR. In all other instances, Eq. (68) can be used
straightforwardly to obtain the electric fields in Eq. (69).

4.2. Step-by-step description of the ADER-WENO scheme

Here we provide a step-by-step description of one time step of the ADER-WENO scheme presented in this paper.

(1) Use the WENO formulae presented in Sections 2.1 and 2.2 to obtain the moments of the face-centered magnetic field
components in Eqs. (43)–(45). Do this without recourse to characteristic interpolation. Once the facial moments are
obtained, use them to reconstruct the magnetic field within all the zones in of the mesh. This can be accomplished
using the formulae in Balsara [6]. This step also gives us a zone-centered mean magnetic field evaluated with the req-
uisite accuracy.

(2) Use the WENO reconstruction formulae presented in Sections 2.1 and 2.2 to obtain the moments of Eq. (4) for each of
the zone-centered quantities. For obtaining the moments in each dimension, as described in Section 2.1, we used
reconstruction in characteristic space. The cross-term reconstruction, described in Section 2.2, was carried out directly
in the space of conserved variables to keep the scheme inexpensive. For some of the most stringent test problems we
also followed the suggestion of Dumbser and Käser (2007) and reconstructed the moments from Section 2.1 twice,
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once in characteristic space and once in the space of conserved variables, and took the smaller of those moments. This
helps stability without damaging the order property. The double reconstruction, applied only to the moments that are
reconstructed in a dimension-by-dimension fashion, adds very little to the computational complexity of the scheme.

(3) Use the WENO formulae presented in Sections 2.1 and 2.2 to obtain the moments of the face-centered magnetic field
components in Eqs. (43)–(45). We are now in a position to carry out this reconstruction in characteristic space. We
now use the facial moments to reconstruct the magnetic field within all the zones in of the mesh using the formulae
in Balsara [6].

(4) Apply the flattening algorithm from Appendix A if that is desired.
(5) Use the ADER-CG scheme that is detailed in Section 3.2 and Appendices B and C to obtain the space–time represen-

tation of the flow variables within each zone. The number of ADER iterations was always equated to the order of the
scheme, i.e. we used the minimum permissible number of ADER iterations for the time-update. As a result, we used
two, three and four ADER iterations for the second, third and fourth order schemes respectively. We followed this
practice for all the test problems presented in this paper. We have never seen the need for using more than the min-
imum number of ADER iterations in our simulations and a good reason for that, based on the Picard iteration, was pre-
sented in Dumbser et al [26].

(6) Obtain the space–time averaged values of the fluxes in Eq. (67). Similarly, obtain the space–time averaged values of
the electric fields in Eq. (69).

(7) Make the one-step updates described in Eqs. (67) and (69).

Notice that after step (5) above we obtain not just the space–time representation of the conserved variable but also all the
fluxes. We have the option of storing all the flux information. That option does add to the memory usage, but yields a faster
scheme. One also has the option of discarding the flux information and rebuilding it for step (6) as and when it is needed.
This yields an ADER scheme that uses memory much more economically. We have chosen the latter approach in the schemes
presented here.

The second order ADER-WENO scheme for MHD simulations uses characteristic reconstruction and updates �31,000
zones per second in three dimensions on a single core mid-grade Intel processor. This makes it very cost-effective relative
to modern, sophisticated second order TVD schemes which also use characteristic reconstruction. The third order ADER-
WENO scheme has a computational complexity that is 2.5 times that of the second order scheme. Likewise, the fourth order
ADER-WENO scheme has a computational complexity that is only 3 times that of the third order scheme. The examples pre-
sented in this paper will show that the increased computational complexity of higher order schemes is easily offset by their
increased accuracy. It is also worth pointing out that all the schemes presented here use the ADER time update and are con-
siderably less expensive than their counterparts that use a Runge–Kutta time update strategy, see Balsara [6].

5. Order property

The schemes presented here easily pass all the standard one dimensional tests for demonstrating order of accuracy. Thus
we prefer to focus on two and three dimensional demonstrations of the order of accuracy in this section. All the two dimen-
sional tests were run with a CFL number of 0.45 and all the three dimensional tests were run with a CFL number of 0.3. A
linearized Riemann solver for MHD, of the type presented in Balsara [1,4] was used for all the tests in this section. All of
the results presented in this section use Balsara’s RIEMANN code for astrophysical fluid dynamics.

It is also worthwhile making a note of the reconstruction used for the second order scheme that we present in this paper.
Following Balsara [5] we used the slopes from the r = 3 WENO reconstruction of Jiang and Shu [40] for our second order
scheme. As a result, the slopes have one more order of accuracy than the accuracy that would be furnished by a TVD-pre-
serving limiter. This yields a very superior second order scheme. It would be very difficult for a basic second order scheme
to obtain the same accuracies as the second order scheme presented here.

5.1. Unmagnetized isentropic vortex in two dimensions

In the unmagnetized vortex problem, presented by Balsara and Shu [9], an isentropic vortex propagates at 45� to the grid
lines in a domain with periodic boundaries given by [�5,5] � [�5,5]. As the original test problem was set up for the Euler
equations, the magnetic field in all three directions is initialized to zero. The unperturbed flow at the initialial time can
be written as (q,P,vx,vy,Bx,By, Bz) = (1,1,1,1,0,0,0). The ratio of the specific heats is given by c = 1.4. The entropy and the tem-
perature are defined as S = P/qc and T = P/q. The vortex is set up as a fluctuation of the unperturbed flow with the fluctuations
given by
ðdvx; dvyÞ ¼
e

2p
e0:5ð1�r2Þð�y; xÞ;

dT ¼ �ðc� 1Þe2

8cp2 eð1�r2Þ;

dS ¼ 0:
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Its strength is controlled by the parameter e which we set to e = 5 according to Balsara and Shu [9]. r is the radius from the
origin of the domain and can be written as r2 = x2 + y2. Please note that the problem has to be initialized in each zone using
numerical quadrature and that the accuracy of the quadrature formulae should match that of the numerical scheme being
used. Also notice that the exponential function in the velocity and temperature fluctuations above ensures that the fluctu-
ations are quite close to zero at the domain boundaries. However, for the fourth order scheme the domain is increased to
[�10,10] � [�10,10] due to the fact that the nonzero values of the exponential function at the boundaries are picked up
by the fourth order scheme on the smaller domain. The stopping time was set to 10 time units for the second and third order
schemes and to 20 time units for the fourth order scheme because of the bigger domain. The stopping time was chosen so
that the vortex has completed one periodic passage through the computational domain.

Table 1 shows the accuracy analysis for the second, third and fourth order schemes presented here. The errors were mea-
sured using the density variable. All three methods meet the expected order of accuracy even for a small number of zones.
The third order ADER-WENO scheme obtains an L1 error norm at 128 � 128 zones which is comparable to the second order
ADER-WENO at 256 � 256 zones, which demonstrates the advantage of a high order scheme. The fourth order scheme can-
not be directly compared to the third and second order schemes because of our use of a much larger computational domain.
We do see though that the fourth order scheme also meets its design accuracy.

5.2. Magnetized isodensity vortex in two dimensions

The magnetized isodensity vortex problem described in Balsara [5] consists of a magnetized vortex moving across a do-
main given by [�5, 5] � [�5,5] at an angle of 45� for a time of 10 units. As before, for the fourth order scheme the domain is
increased to [�10,10] � [�10,10] and the simulation time is increased to 20 units. Periodic boundaries are used for the do-
main and it is initialized with an unperturbed flow of (q,P,vx,vy,Bx,By) = (1,1,1,1,0,0). The ratio of the specific heat is set to
c = 5/3. The vortex is set up as a fluctuation of the unperturbed flow in the velocities and the magnetic field given by
Table 1
The acc
errors w

Method

2nd ord

3rd ord

4th ord
ðdvx; dvyÞ ¼
j

2p
e0:5ð1�r2Þð�y; xÞ;

ðdBx; dByÞ ¼
l

2p
e0:5ð1�r2Þð�y; xÞ:
According to Balsara [5] the pressure fluctuation can be written as
dP ¼ 1
8p

l
2p

� �2
ð1� r2Þeð1�r2Þ � 1

2
j

2p

� �2
eð1�r2Þ
and the density is set to unity.
Table 2 shows the error measured in the x-component of the magnetic field. All three schemes meet the design order of

accuracy even at a small number of zones. As in the previous test problem we see that the third order scheme at 128 � 128
zone resolution shows the same L1 error as the second order scheme at 256 � 256 zone resolution. This illustrates the utility
and cost-effectiveness of the higher order schemes because the third order scheme easily offsets its slightly greater compu-
tational complexity (relative to the second order scheme) by delivering a comparably accurate solution on a mesh that has
half as many zones in each direction.

5.3. Torsional Alfven wave propagation in three dimensions

The previous test problems used flows that were exact, equilibrium structures of the governing equations. While torsional
Alfven waves also satisfy the governing equations, they are susceptible to parametric instabilities. These instabilities exist at
low values of plasma-b, see Goldstein [34] and Del Zanna et al. [23], and also at high values of plasma-b, see Jayanti and
Hollweg [38]. The instabilities can of course be suppressed by numerical dissipation and all schemes have such numerical
uracy analysis for the two-dimensional unmagnetized isentropic vortex problem using the second, third and fourth order schemes presented here. The
ere measured using the density variable.

Number of zones L1 error L1 order L1 error L1 order

er ADER CG 32 � 32 5.1124900 � 10�3 1.1677400 � 10�1

64 � 64 1.0527400 � 10�3 2.28 2.3322500 � 10�2 2.32
128 � 128 2.2522500 � 10�4 2.22 4.6105000 � 10�3 2.34
256 � 256 5.4364900 � 10�5 2.05 1.0438700 � 10�3 2.14

er ADER CG 32 � 32 3.9555500 � 10�3 9.5757200 � 10�2

64 � 64 6.4692800 � 10�4 2.61 1.3762400 � 10�2 2.80
128 � 128 7.6747300 � 10�5 3.08 1.9531200 � 10�3 2.82
256 � 256 9.3029100 � 10�6 3.04 2.4996400 � 10�4 2.97

er ADER CG 32 � 32 4.5318300 � 10�3 2.7546100 � 10�1

64 � 64 4.7962700 � 10�4 3.24 3.1474100 � 10�2 3.13
128 � 128 2.3561700 � 10�5 4.35 1.6096600 � 10�3 4.29
256 � 256 8.7922100 � 10�7 4.74 7.2832400 � 10�5 4.47



Table 2
The error measured in the x-component of the magnetic field for the two-dimensional magnetized isodensity vortex problem. Results from the third and fourth
order schemes presented in this paper are tabulated here.

Method Number of zones L1 error L1 order L1 error L1 order

2nd order ADER CG 32 � 32 7.8294900 � 10�3 1.2119700 � 10�1

64 � 64 2.2175500 � 10�3 1.82 3.0823400 � 10�2 1.98
128 � 128 5.4236600 � 10�4 2.03 6.8924200 � 10�3 2.16
256 � 256 1.3477000 � 10�4 2.01 1.6531500 � 10�3 2.06

3rd order ADER CG 32 � 32 5.5966400 � 10�3 1.0136700 � 10�1

64 � 64 9.7810500 � 10�4 2.51 1.7964500 � 10�2 2.50
128 � 128 1.2692200 � 10�4 2.95 2.3763700 � 10�3 2.92
256 � 256 1.5983600 � 10�5 2.99 2.9869600 � 10�4 2.99

4th order ADER CG 32 � 32 5.3198700 � 10�3 2.8849000 � 10�1

64 � 64 4.7436200 � 10�4 3.48 3.1605200 � 10�2 3.19
128 � 128 1.7658600 � 10�5 4.75 8.9386200 � 10�4 5.14
256 � 256 1.0736400 � 10�6 4.04 5.4681200 � 10�5 4.03
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dissipation. As a result, second order schemes do not show these instabilities till the Alfven wave is very highly resolved.
However, higher order schemes can pick up on the slightest amount of numerical noise and propagate it as a true fluctuation.
Since the torsional Alven waves are susceptible to physical growth of such fluctuations, they will be treated as such by the
numerical scheme. To avoid such deleterious effects, we carry out this test problem at very high values of plasma-b where
the growth of such instabilities is suppressed.

The problem consists of initializing a torsional Alfven wave along the x
0

axis of an (x
0
,y
0
,z
0
) coordinate system with the

following variables:
Table 3
The acc
were m

Method

2nd ord

3rd ord

4th ord
q ¼ 1; P ¼ 1000; U ¼ 2p
k
ðx0 � 2tÞ

vx0 ¼ 1; vy0 ¼ e cos U; vz0 ¼ e sin U

Bx0 ¼
ffiffiffiffiffiffiffiffiffiffi
4pq

p
; By0 ¼ �e

ffiffiffiffiffiffiffiffiffiffi
4pq

p
cos U; Bz0 ¼ �e

ffiffiffiffiffiffiffiffiffiffi
4pq

p
sin U
where we take e = 0.02 and k ¼
ffiffiffi
3
p

. We utilize the magnetic vector potential when initializing the magnetic field in a diver-
gence-free fashion on a three dimensional mesh. The magnetic vector potential is given by
Ax0 ¼ 0; Ay0 ¼ ek
ffiffiffiffiffiffiffiffiffi
q=p

p
cos U; Az0 ¼

ffiffiffiffiffiffiffiffiffiffi
4pq

p
y0 þ ek

ffiffiffiffiffiffiffiffiffi
q=p

p
sin U
Please note that the magnetic vector potential has to be assigned to each zone’s edges using numerical quadrature. Also note
that the accuracy of the quadrature formula should match the accuracy of the scheme. An application of Stokes law in inte-
gral form at each face then yields the magnetic field component in that face.

The actual problem is solved on a unit cube with periodic boundary conditions in the (x,y,z) coordinate frame which is
rotated relative to the (x

0
,y
0
,z
0
) coordinate system. The rotation matrix is given by A so that we have
A ¼
cos w cos /� cos h sin / sin w cos w sin /þ cos h cos / sin w sin w sin h

� sin w cos /� cos h sin / cos w � sin w sin /þ cos h cos / cos w cos w sin h

sin h sin / � sin h cos / cos h

264
375
where / ¼ �p=4; h ¼ sin�1ð�
ffiffiffiffiffiffiffiffi
2=3

p
Þ and w ¼ sin�1ðð

ffiffiffi
2
p
�

ffiffiffi
6
p
Þ=4Þ. As a result, the position vector r

0
in the primed frame trans-

forms to the position vector r in the unprimed frame as r = A r
0
. Other vectors transform similarly. The effect of the rotation is

to make the wave propagate along the diagonal of the unit cube. The wave propagates at a speed of 2 units and the problem
is stopped at a time of

ffiffiffi
3
p

=2 by which time it has propagated once around the unit cube.
uracy analysis for the three-dimensional torsional Alfven wave problem using the second, third and fourth order schemes presented here. The errors
easured using the x-component of the magnetic field.

Number of zones L1 error L1 order L1 error L1 order

er ADER CG 8 � 8 � 8 3.46853 � 10�2 5.17647 � 10�2

16 � 16 � 16 2.21299 � 10�2 0.65 3.49355 � 10�2 0.57
32 � 32 � 32 4.39797 � 10�3 2.33 6.91806 � 10�3 2.34
48 � 48 � 48 1.47483 � 10�3 2.70 2.32106 � 10�3 2.69

er ADER CG 8 � 8 � 8 3.56563 � 10�2 5.32958 � 10�2

16 � 16 � 16 1.70998 � 10�2 1.06 2.64223 � 10�2 1.01
32 � 32 � 32 2.69478 � 10�3 2.67 4.24842 � 10�3 2.64
48 � 48 � 48 8.13170 � 10�4 2.95 1.29199 � 10�3 2.94

er ADER CG 8 � 8 � 8 2.70726 � 10�2 4.08123 � 10�2

16 � 16 � 16 1.31026 � 10�3 4.37 2.05093 � 10�3 4.32
32 � 32 � 32 5.49661 � 10�5 4.58 8.57932 � 10�5 4.58
48 � 48 � 48 1.11393 � 10�5 3.94 1.90199 � 10�5 3.72



Table 4
The accuracy analysis for the three-dimensional density wave problem using the second, third and fourth order schemes presented here. The errors were
measured using the density variable.

Method Number of zones L1 error L1 order L1 error L1 order

2nd order ADER CG 8 � 8 � 8 6.09811 � 10�2 9.64241 � 10�2

16 � 16 � 16 1.58837 � 10�2 1.94 2.43894 � 10�2 1.98
32 � 32 � 32 3.63924 � 10�3 2.13 5.69284 � 10�3 2.10
48 � 48 � 48 1.58011 � 10�3 2.06 2.47718 � 10�3 2.05

3rd order ADER CG 8 � 8 � 8 5.30213 � 10�2 8.25208 � 10�2

16 � 16 � 16 9.48506 � 10�3 2.48 1.37539 � 10�2 2.59
32 � 32 � 32 1.29720 � 10�3 2.87 2.07369 � 10�3 2.73
48 � 48 � 48 3.95625 � 10�4 2.93 5.80456 � 10�4 3.14

4th order ADER CG 8 � 8 � 8 1.76010 � 10�2 2.90944 � 10�2

16 � 16 � 16 4.50487 � 10�4 5.29 8.94523 � 10�4 5.02
32 � 32 � 32 1.56149 � 10�5 4.85 3.61468 � 10�5 4.63
48 � 48 � 48 2.50965 � 10�6 4.51 6.80014 � 10�6 4.12
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Table 3 shows the accuracy analysis for the second, third and fourth order schemes presented here. The errors were mea-
sured using the x-component of the magnetic field. All three methods meet the expected order of accuracy even for a small
number of zones. Compared to the second and third order schemes we see that the fourth order scheme has reached a very
high accuracy of one part in 105 on the 48 � 48 � 48 zone mesh. The fourth order scheme shows a very slight evidence for
parametric instability at 48 � 48 � 48 zone resolution in the L1 norm since it has picked up extremely tiny, numerically gen-
erated errors in the pressure and propagated them. The second and third order schemes never reach the same small value of
the error on the meshes that are displayed but on very high resolution meshes and a lower pressure we have been able to
verify that they too pick up slight traces of the parametric instability.

Since all three schemes were run on the same problem, we can cross-compare the errors in the second, third and fourth
order schemes using this accuracy analysis presented in Table 3. Notice that on a resolution starved mesh, such as the
16 � 16 � 16 mesh in Table 3 the fourth order scheme offers almost an order of magnitude improvement in accuracy over
the second and third order schemes. We also see that the fourth order scheme at 16 � 16 � 16 zone resolution is already as
accurate as the second order scheme at 48 � 48 � 48 zone resolution. The 48 � 48 � 48 zone calculation at second order
takes 12 times longer to complete than the 16 � 16 � 16 zone calculation at fourth order, thus illustrating the advantage
of using a higher order scheme.

5.4. Density wave propagation in three dimensions

This test problem consists of propagating a density wave with a sinusoidal profile along the diagonal of the same unit
cube that was described in the previous sub-section. Now the parameters in the (x

0
, y

0
, z

0
) coordinate system are given by
q ¼ 1þ e sin U; P ¼ 1; U ¼ 2p
k
ðx0 � tÞ;

vx0 ¼ 1; vy0 ¼ 0; vz0 ¼ 0; Bx0 ¼ 0; By0 ¼ 0; Bz0 ¼ 0
where we take e = 0.2 and k ¼
ffiffiffi
3
p

. The density profile and velocities are then rotated into a periodic unit cube using the rota-
tion matrix described in the previous Sub-section. The problem is stopped at a time of

ffiffiffi
3
p

by which time the density wave
has propagated once around the unit cube.

Table 4 shows the accuracy analysis for the second, third and fourth order schemes presented here. The errors were mea-
sured using the density variable. All three methods meet the expected order of accuracy even for a small number of zones.
Since all three schemes were run on the same problem, we can cross-compare the errors in the second, third and fourth order
schemes using this accuracy analysis. We see that the fourth order scheme at 16 � 16 � 16 zone resolution provides a more
accurate result that the second order scheme at 48 � 48 � 48 zone resolution, again underscoring the advantages of using
higher order schemes.

6. Hydrodynamical test problems

In this section we present several stringent hydrodynamical test problems. The schemes we have presented operate accu-
rately and robustly on all of these problems. This illustrates the utility of our methods for simulating hydrodynamical flows.
The RIEMANN code was used for all these tests.

6.1. Interacting blast problem in one dimension

The interacting blast problem was presented by Woodward and Colella [58]. We used the fourth order ADER-WENO
scheme with the linearized Riemann solver to compute this problem using exactly the same parameters as the original
authors of this problem. The CFL number was set to 0.8. Fig. 2 shows the density variable of a simulation with 400 zones
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as diamonds. The solid line is the converged density profile of a simulation using 1600 zones. We see that the left-going con-
tact discontinuity is captured well in the simulation using 400 zones. We further note that all the flow structures in the 400
zone simulation are very close to the converged simulation.

6.2. Shock-entropy wave interaction in one dimension

The one dimensional shock-entropy wave interaction problem was first presented by Shu and Osher [51]. It consists of a
Mach 3 shock interacting with a density disturbance. That generates a flow field that is a combination of discontinuities and
smooth structures. Therefore the problem is a good model for the interactions occurring in simulations of compressible tur-
bulences. Additionally it represents the amplification of entropy fluctuations as they pass through a shock. These interactions
of smooth structures with shocks pose a problem for TVD schemes as the damaging effects of the TVD limiters are maximal
in these cases. Jiang and Shu [40] made a detailed study showing that the r = 3 WENO scheme performs superior to a well-
designed TVD scheme. They concluded that the r = 3 WENO scheme using 800 zones outperformed the TVD scheme using
2000 zones by a substantial margin. We computed the problem using several ADER-WENO schemes with the linearized Rie-
mann solver at a CFL number of 0.8. To highlight the role of TVD limiters, we even ran a simulation using the MC limiter of
vanLeer for the spatial interpolation and the ADER scheme for the time-evolution. The computational domain spans [�1,1]
and was set up with 200 zones. The initial condition is given by
Fig. 2.
profile
ðqL; PL;vx;LÞ ¼ ð3:857143;10:3333;2:629369Þ x < �0:8
ðqR; PR;vx;RÞ ¼ ð1þ 0:2 sinð5pxÞ;1;0Þ x > �0:8
The simulation was stopped at 0.47 time units.
Fig. 3 shows the density profile of the third and fourth order ADER-WENO schemes as well as the TVD scheme using 200

zones as diamonds and the reference solution, which was calculated on an 800 zones grid, as a solid line. We note that the
density profile of the fourth order scheme has almost converged to the reference solution and shows all the extrema that are
seen in the reference solution even though it uses a 200 zone grid. Furthermore we see that the scheme needs no more than
11 points between extrema in the density variable immediately after the shock. The third order scheme is quite close to the
reference solution while the TVD scheme misses the reference solution by a wide margin. Therefore we note, that the solu-
tion of the ADER-WENO schemes converged to the reference solution using a small number of points. This shows that the
third order ADER-WENO scheme converges faster to the reference solution than a lower order scheme and has the smaller
error if the number of zones is kept constant.

6.3. Resolution study of the forward facing step problem in two dimensions

This test problem was first presented by Woodward and Colella [58]. Cockburn and Shu [16] carried out a resolution study
using schemes of increasing order of accuracy. Increasing the resolution enabled them to capture important details such as
the roll up of the vortex sheet via Kelvin–Helmholtz instability. They also showed that more accurate schemes were able to
The density profile for the interacting blast problem. The diamonds show the results of a 400 zone simulation. The solid line is a converged density
obtained from a 1600 zone simulation. The fourth order ADER-WENO scheme with a linearized Riemann solver was used for both simulations.



Fig. 3. Density from the shock entropy problem. The first and second panels show the 4th order and 3rd order ADER-WENO schemes. The third panel shows
the TVD scheme with an MC limiter. The converged solution was obtained from an 800 zone simulation and is shown with a solid line. Notice the better
convergence of the higher order schemes.
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capture the vortex sheet roll-up with smaller number of zones. Our purpose is to make a similar resolution study and to
prove that the schemes are accurate and perform robustly on this stringent problem. We therefore simulated this test prob-
lem using the fourth order ADER-WENO scheme with increasing resolution as shown in Fig. 4.

The problem consists of a two-dimensional wind tunnel that spans a domain of [0, 3] � [0, 1]. A forward-facing step is
set up at a location given by the coordinates (0.6,0.2). Inflow boundary conditions are applied at the left boundary, where
the gas enters the wind tunnel at Mach 3.0 with a density of 1.4 and a pressure of unity. The right boundary is an outflow
Fig. 4. This resolution study shows the density variable from the forward facing step problem at resolutions of 240 � 80, 480 � 160 and 960 � 320 zones at
a time of 4 units. Thirty equally spaced contours are shown in the density variable ranging from 0.090338 to 6.2365. The fourth order scheme with a
linearized Riemann solver was used. We see the beginnings of the vortex sheet roll-up at a resolution of 480 � 160 zones and the 960 � 320 zone simulation
captures the roll-up very clearly.
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boundary. The walls are set to be reflective boundaries. The singularity at the corner was treated with the same technique
that Woodward and Colella [58] suggested. The simulation was run until a time of 4.0 time units and the ratio of specific
heats is given by 1.4.

Fig. 4 shows the density at the final time at a mesh resolution of 240 � 80, 480 � 160 and 960 � 320. All of the three sim-
ulations were run with a fourth order scheme and a linearized Riemann solver. The CFL number was set to 0.4. All the shocks
are properly captured on the computing grid and have sharp profiles. The vortex sheet that emanates from the Mach stem is
correctly resolved with only a few zones across the sheet. We notice that the vortex sheet shows little or no spreading over
the length of the computational domain. At a resolutions of 960 � 320 and 480 � 160 the roll up of the vortex sheet is clearly
visible. An exceptionally good second order scheme would need at least a resolution of 960 � 320 zones to start showing
evidence of the vortex sheet’s roll-up. Such a second order scheme operating on this problem with a resolution of
960 � 320 zones would furnish the same solution quality as the fourth order scheme does at a resolution of 480 � 160. This
demonstrates the ability of the high order schemes to provide a better resolution at a smaller number of zones.
Fig. 5. A resolution study of the double Mach reflection of a strong shock. The 1st and 2nd panels show the density from 960 � 240 and 1920 � 480 zone
simulations. The lowest two panels show details at the Mach stem for each of those two simulations with the lowest left panel corresponding to the lower
resolution simulation. The 4th order ADER-WENO scheme with an HLL Riemann solver was used. 30 contours were fit between a range of 1.3965 and
22.882. We clearly see the roll up of the Mach stem due to Kelvin-Helmholtz instability in the higher resolution simulation.
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6.4. Resolution study of the double mach reflection of a strong shock in two dimensions

This problem was presented by Woodward and Colella [58]. We use the exactly the same setup for the test problem as the
authors did. A Mach 10 shock hits a reflecting wall which spreads from x = 1/6 to x = 4 at the bottom of the domain given by
[0,4] � [0,1]. The angle between the shock and the wall is 60�. At the start of the computation the position of the shock is
given by (x,y) = (1/6,0). The undisturbed fluid in front of the shock is initialized with a density of 1.4 and a pressure of 1. The
exact post-shock condition is used for the bottom boundary from x = 0 to x = 1/6 to mimic an angled wedge. For the remain-
ing boundary at the bottom of the domain we used a reflective boundary condition. The top boundary condition imposes the
exact motion of a Mach 10 shock in the flow variables. The left and right boundaries are set to be inflow and outflow
boundaries.

Fig. 5 shows the density variable at t = 0.2 in [0,3] � [0,1] as in Woodward and Colella [58]. The upper panel shows a res-
olution of 960 � 240 zones, the second panel shows a resolution of 1920 � 480 zones. The two panels at the bottom show a
Fig. 6. One-Dimensional Riemann problem showing all seven waves. The 4th order ADER-WENO scheme was used with an HLLE Riemann solver. Notice
that the Alfven waves as well as the slow shocks are captured with very few zones.



Fig. 6 (continued)
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blow-up of the region around the double Mach stem for both computations. All the plots show 30 contours equally distrib-
uted from q = 1.3965 to q = 22.682. We used the fourth order ADER-WENO scheme with an HLL Riemann solver for both
simulations.

Notice that the fourth order ADER-WENO scheme resolves all the structures that are shown in Cockburn and Shu [16].
According to Cockburn and Shu [16] a second order scheme would need at least four times as many zones in each direction
to resolve the instability and for such a simulation it would need more CPU time than the fourth order scheme. That dem-
onstrates the efficiency of the higher order schemes presented here.

7. MHD Test problems

We present several stringent MHD test problems in this section. The MHD schemes we have presented operate accurately
and robustly on all of these problems showing the utility of our methods. The RIEMANN code for astrophysical simulations
was used for all of these MHD tests.
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7.1. MHD Riemann problems in one dimension

First we present one of the Riemann problems from Ryu and Jones [48]. It is set up on a 400-zone mesh spanning the
domain given by [�0.5,0.5]. The initial conditions are given by
Fig. 7.
scheme
virtuall
ðqL; PL;vx;L;vy;L;vz;L; By;L;Bz;LÞ ¼ ð1:08;0:95;1:2;0:01; 0:5;3:6;2:0Þ x < 0
ðqR; PR;vx;R;vy;R;vz;R;By;R;Bz;RÞ ¼ ð1:0;1:0;0;0;0;4:0;2:0Þ x > 0
The x-component of the magnetic field is given by Bx = 2. The simulation was stopped at a time of 0.2 and the ratio of specific
heats was set to 5/3. As this is a non-coplanar problem it generates seven waves, which are a right-going fast shock, a right-
going rotational discontinuity, a right-going slow shock, a contact discontinuity, a left-going slow-shock, a left-going rota-
tional discontinuity and a left-going fast shock. Ryu and Jones [48] also provide the exact solution for this Riemann problem.
One-Dimensional Riemann problem showing the interaction of two very high Mach number streams of magnetized fluid. The 4th order ADER-WENO
was used with an HLLE Riemann solver. Notice that despite the near-infinite shocks that are generated in this problem, the flow variables are

y free of any post-shock oscillations.



Fig. 7 (continued)
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We simulated the problem using the fourth order ADER-WENO scheme using an HLL Riemann solver and a CFL number of
0.8. Fig. 6 shows the density, the pressure, x-velocity, y-velocity, z-velocity and the y- and z-component of the magnetic field.
All the shock profiles are properly captured within a few zones. We note that our high order scheme captures slow shocks
with only a few zones across them. In Balsara [2] it was shown that profiles of slow shocks sometimes have a little more than
the optimal number of zones across them if TVD schemes for MHD are used. In Fig. 6 we see that the fourth order ADER-
WENO scheme resolves the slow shock as a sharp profile. Therefore we note that the representation of slow shocks is im-
proved by high order schemes. We also see that the contact discontinuity and the rotational discontinuity profiles are cap-
tured with a few zones. Notice the small number of zones between the rotational discontinuity and the corresponding slow
shock. The ability of the scheme to resolve every discontinuity as a sharp profile is necessary to distinguish the rotational
discontinuity from the slow shock and to maintain a high accuracy.
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Our next Riemann problem comes from Dai and Woodward [21]. It is set up on a 400-zone mesh spanning the domain
given by [�0.5,0.5]. The initial conditions are given by
Fig. 8.
panels
used w
same in
lineariz
ðqL; PL;vx;L;vy;L;vz;L; By;L;Bz;LÞ ¼ ð1:0;1:0;36:87;�0:155;�0:0386;4:0;1:0Þ x < 0
ðqR; PR;vx;R;vy;R;vz;R;By;R;Bz;RÞ ¼ ð1:0;1:0;�36:87;0; 0;4:0;1:0Þ x > 0
The x-component of the magnetic field is given by Bx = 4. The simulation was stopped at a time of 0.03 and the ratio of spe-
cific heats was set to 5/3. The problem consists of two very high Mach number streams of magnetized fluid rushing towards
each other. It can be thought of as the MHD equivalent of the Noh problem. The resolved state consists of two fast magneto-
sonic shocks of Mach number 25.5 propagating out of the interaction region. We simulated the problem using the fourth
order ADER-WENO scheme using an HLL Riemann solver and a CFL number of 0.8. Fig. 7 shows the density, the pressure,
x-velocity, y-velocity, z-velocity and the y- and z-component of the magnetic field. All the shock profiles are properly cap-
tured within a few zones and do not display any post-shock oscillations. This problem, along with a few other problems pre-
sented in this section, demonstrates that higher order schemes can successfully tackle problems with very strong shocks
while simultaneously giving us the advantages of high resolution, high accuracy and low numerical dissipation.
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The log-linear plots show the decay of torsional Alfven waves that are made to propagate obliquely on a two dimensional square. The above two
show the decay of the maximum z-velocity and the maximum z-component of the magnetic field when second, third and fourth order schemes are
ith an HLLE Riemann solver. For comparison purposes, we also show results from a TVD scheme with an MC limiter. The lower two panels show the
formation when a linearized Riemann solver is used. Notice that the decay is substantially reduced with increasing order. Notice too that the

ed Riemann solver provides a substantial improvement to the solution, especially at lower orders.



D.S. Balsara et al. / Journal of Computational Physics 228 (2009) 2480–2516 2507
7.2. Numerical dissipation and long-term decay of Alfven waves in two dimensions

In several fields, like astrophysics or space physics, one is interested in the evolution of waves to simulate certain prob-
lems such as turbulence. The Alfven wave decay test problem first presented by Balsara [5] examines the dissipation of
torsional Alfven waves in two dimensions. In this test problem torsional Alfven waves propagate at an angle of
tan�1(1/r) = tan�1(1/6) = 9.462� to the y-axis through a domain given by [�r/2,r/2] � [�r/2,r/2] with r = 6. The domain was
set up with 120 � 120 zones and has periodic boundary conditions. The pressure and density are uniformly initialized as
P0 = 1 and q0 = 1. The unperturbed velocity and unperturbed magnetic field are given by v0 = 0 and B0 = 1. The amplitude
of the Alfven waves is parametrized by a velocity fluctuation e, which is set to 0.2. Different test problems can be set up
by changing these values. The simulation was stopped at 129 time units by which time the waves had crossed the domain
several times. The CFL number was set to 0.4. The direction of the wave propagation along the unit vector can be written as
n̂ ¼ nxîþ nyĵ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1
p îþ rffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ 1
p ĵ:
The phase of the waves is given by
/ ¼ 2p
ny
ðnxxþ nyy� VAtÞ;whereVA ¼

B0ffiffiffiffiffiffiffiffiffiffiffiffi
4pq0

p :
The velocity is given by
v ¼ ðv0nx � eny cos uÞ̂iþ ðv0ny � enx cos uÞ̂jþ e sin uk̂:
The magnetic field is given by
B ¼ ðB0nx þ eny

ffiffiffiffiffiffiffiffiffiffiffiffi
4pq0

p
cos uÞ̂iþ ðB0ny � enx

ffiffiffiffiffiffiffiffiffiffiffiffi
4pq0

p
cos uÞ̂j� e

ffiffiffiffiffiffiffiffiffiffiffiffi
4pq0

p
sinuk̂:
The corresponding vector potential is given by
A ¼ � e
ffiffiffiffiffiffiffiffiffiffiffiffi
4pq0

p
2p

cos uîþ ð�B0nyxþ B0nxyþ eny

ffiffiffiffiffiffiffiffiffiffiffiffi
4pq0

p
2p

sin uÞk̂
and it is used to initialize the magnetic field.
The dissipation of the numerical scheme can be measured in the decay of the maximum values of the z-component of the

velocity and the magnetic field. The r.m.s. values of the velocity and the magnetic field decay in the same fashion as the max-
imal values of these quantities do. For this reason they are not presented here. Kim et al. [41] showed that these plots give a
good qualitative understanding of numerical viscosities and resistivities in a numerical scheme. In Fig. 8 the maximum z-
component of the velocity and of the magnetic field are plotted at every time step in a log-linear plot. We used the HLL
and linearized Riemann solvers with the second, third and fourth order ADER-WENO schemes. For comparison purposes,
we also show the results from a TVD scheme that used vanLeer’s MC limiter. We notice that the second order interpolation
used in this paper results in a substantial improvement over the TVD scheme. It can also be seen that with increasing order of
accuracy the numerical dissipation of the scheme reduces significantly independent of the Riemann solver that is used. This
makes the higher order schemes more favorable for simulations of complex phenomena that involve wave propagation. Fur-
ther it can be noted that the linearized Riemann solver is substantially less dissipative than the HLL Riemann solver in both
measured quantities. But this effect decreases with increasing order of accuracy because the improved reconstruction sig-
nificantly reduces the difference in flow variables at the zone boundaries where the Riemann problem is solved. We there-
fore see that it is acceptable to use less expensive Riemann solvers as the order of the scheme is increased.

7.3. The rotor problem in two dimensions

The two dimensional rotor problem was presented in Balsara and Spicer [11] and in Balsara [5]. Here we describe a ver-
sion of this test problem. The computational mesh has 200 � 200 zones and spans the domain [�0.5,0.5] � [�0.5,0.5]. A
dense and rapidly spinning cylinder is set up in the center of an initially stationary, light ambient fluid. The ambient fluid
is initially static. A uniform magnetic field initially threads the two fluids. Its value is set to 2.5 units. The pressure in both
fluids is set to unity. The density in the ambient fluid is uniformly set to unity, while the constant density in the rotor is 10
units out to a radius of 0.1. A linear taper is applied to the density between a radius of 0.1 and 0.13 so that the density in the
rotor decreases linearly to the value of the density in the ambient fluid. Therefore the taper needs six zones to join the den-
sity of the two fluids. That number should be kept fixed if the resolution is increased or decreased. The initial angular velocity
of the rotor is uniform out to a radius of 0.1. At this radius the toroidal velocity has a value of one unit. The toroidal velocity
decreases linearly from one unit to zero between a radius of 0.1 and 0.13 so that it joins the velocity of the ambient fluid at a
radius of 0.13. The ratio of specific heats is given by 5/3. The Courant number was set to 0.4. The fourth order ADER-WENO
scheme with the linearized Riemann solver was applied to this problem. In Fig. 9 the density, the pressure, the Mach number
and the magnitude of the magnetic field are shown at a time of 0.29 units. Balsara and Spicer [11] provided a detailed phys-
ical description of this problem. The results presented in Fig. 9 show a good consistency with the descriptions in Balsara and



Spicer [11]. We therefore conclude that the multidimensional limiting presented in this paper works well for numerical
MHD.

7.4. The blast problem in two dimensions

Balsara and Spicer [11] first presented the two dimensional blast problem. It is set up by following the prescription in
Balsara and Spicer [11]. The fourth order ADER-WENO scheme with the HLL Riemann solver was applied to a mesh having
200 � 200 zones and covering the domain [�0.5,0.5] � [�0.5,0.5]. In Fig. 10 the logarithm (base 10) of the density, the log-
arithm (base 10) of the pressure, the magnitude of the velocity and the magnitude of the magnetic field are shown at a time
of 0.01. A detailed physical description of the problem is given in Balsara and Spicer [11]. We see that the results that we
present are consistent with that description. Notice that the plasma-b is 0.000251 in the ambient medium. An almost circu-
lar, fast magnetosonic shock propagates through the ambient plasma and it is the fastest wave structure in this problem. The
propagation of this extremely strong shock at all angles to the initial magnetic field in the low-b ambient plasma makes this
Fig. 9. Rotor problem where the top two panels show the density and pressure and the bottom two panels show the Mach number and the magnitude ofthe magnetic field. The fourth order ADER-WENO scheme with a linearized Riemann solver was used. 30 contours are shown for each figure with the minand max values catalogued above the panels.2508 D.S. Balsara et al. / Journal of Computational Physics 228 (2009) 2480–2516
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Fig. 11 shows the logarithm (base 10) of the density, the logarithm (base 10) of the pressure, the magnitude of the velocity
and the magnitude of the magnetic field in the central xy-plane at the final time of the simulation. We see that an almost
spherical fast magnetosonic shock propagates through the low-b ambient plasma. While this shock is a nearly infinite shock,
the fourth order scheme handles it without problem. All structures are crisply captured and there is no sign of undue oscil-
lations anywhere on the computational mesh. The pressure remains positive throughout the simulation showing the utility
of the divergence-free reconstruction in the simulation of low-b plasmas.

8. Conclusions

We have presented a new class of ADER-WENO schemes for high order evolution of hyperbolic systems of conservation
laws. The methods are very general and can be used for several hyperbolic systems. In the present paper we have applied
them with success to Euler and MHD flows. Below we make a point-wise catalogue of the advances reported in this paper:

(1) A very efficient finite volume WENO reconstruction strategy has been presented for structured meshes. We have
shown that the most elegant and compact formulation of WENO reconstruction obtains when the interpolating func-
tions are expressed in modal space. Explicit formulae have been developed for spatial reconstruction that go up to
fourth order of accuracy.

(2) The most essential aspects of divergence-free reconstruction of magnetic fields have been discussed in this paper. Fur-
ther details for carrying out such a reconstruction have been reported in Balsara [6]. It is shown here that the recon-
struction naturally furnishes all the moments of the magnetic field within a zone consistent with retaining a specified
order of accuracy.

(3) A general purpose flattener algorithm has been presented in Appendix A. The algorithm detects regions with strong
shocks and suitably stabilizes higher order schemes in those regions.

(4) ADER-CG schemes, especially as they are compactly formulated in modal space, are reported here. Section 3.1 presents
a general purpose formulation that makes it possible to design ADER-CG schemes in modal space for structured and
unstructured meshes. For structured meshes we have explicitly demonstrated that the modal formulation yields the
most compact and elegant formulation. It is also worth mentioning that on unstructured meshes the use of Dubiner
[25] bases yields a similarly compact and elegant formulation of ADER-CG schemes.

(5) Section 3.2 presents a detailed instantiation of the third order ADER-CG scheme. This is done with the intent of facil-
itating its easy implementation by other practitioners. Appendices B and C present the most essential details for ADER-
CG schemes at second and fourth orders, respectively.

(6) The one-step update of the resultant ADER-WENO schemes makes them lower storage alternatives to the multi-stage
Runge–Kutta time discretizations that have been used in the past. The ADER-WENO schemes also bypass the recon-
struction step that is needed in each stage of the multi-stage Runge–Kutta time discretization, making them the more
efficient alternative. The ADER-WENO schemes are also free of the Butcher barriers that seem to occur in Runge–Kutta
time discretizations, see Spiteri and Ruuth [52].

(7) The one-step update of the ADER-WENO schemes makes them desirable building blocks for AMR calculations.
(8) Section 5 presents several examples showing that the ADER-WENO schemes meet their design accuracies in two and

three dimensions for Euler and MHD flows.
(9) Sections 6 and 7 present several stringent test problems in one, two and three dimensions. The tests span Euler and

MHD flows. Several of our test problems are very demanding on the numerical scheme because they require an ability
to capture delicate flow structures accurately in the presence of almost infinite shocks. The higher order schemes
along with the divergence-free reconstruction strategies for treating magnetic fields that we have presented here per-
form very well on all of those tests.

(10) It is shown that the increasing computational complexity with increasing order is handily offset by the increased accu-
racy of the scheme. The resulting ADER-WENO schemes are, therefore, very worthy alternatives to the standard sec-
ond order schemes for compressible Euler and MHD flow.
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Appendix A. Flattening algorithm in the vicinity of strong shocks

In this appendix we describe the flattening algorithm used in the vicinity of strong MHD shocks. As shown by Colella
and Woodward [18] and Balsara [4], such algorithms are useful for producing practical higher order schemes with a broad



range of good operation. We construct the undivided divergence of the velocity in each zone and call it Dx (r � v)i,j,k. The
zones are labeled by a subscript ‘‘i,j,k” on a three dimensional mesh. In each zone we also construct the largest magneto-

sonic speed of the MHD waves relative to the mean flow in that zone and call it ki;j;k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcPi;j;k þ B2

i;j;k=ð4pÞÞ=qi;j;k

q
. In each

zone we construct km;i,j,k which is the minimum of ki,j,k in the zone of interest and the neighboring zones that abut it. Thus
in two dimensions we evaluate km;i,j,k by scanning nine zones and in three dimensions we scan twenty seven zones. Mak-
ing a comparison between Dx (r � v)i,j,k and km;i,j,k then enables us to detect strong shocks. We therefore construct the
detector function as
di;j;k ¼minð1; absðDx ðr � vÞi;j;k þ d km;i;j;kÞ=ðd km;i;j;kÞÞHð�ðDx ðr � vÞi;j;k þ d km;i;j;kÞÞ;
where H(x) is the Heaviside function and is unity for x > 0 and zero for x < 0. d is a positive number that is set to be of order
unity. Notice that the detector function di,j,k is zero in the vicinity of smooth flow or even in the presence of moderately com-
pressive shocks. It only deviates from 0 and goes smoothly to unity only in the vicinity of strongly compressive shocks. This
threshold is important for retaining the order property. In some problems there might be a tendency for generating strong
rarefactions which can also become problematical. In that case we can modify the above detector function to include rarefac-
tions as
di;j;k ¼minð1; absð� j Dx ðr � vÞi;j;k j þd km;i;j;kÞ=ðd km;i;j;kÞÞHð�ð� j Dx ðr � vÞi;j;k j þd km;i;j;kÞÞ
In zones with a non-zero strong shock detector function we modify the modes in Eqs. (4), (43), (44) and (45). Except for the
piecewise linear variation in Eq. (4), we prefer to multiply all the higher moments (i.e. the ones with quadratic or cubic var-
iation) by (1 � di,j,k) so that those zone-centered moments are effectively zero in the vicinity of strong shocks. Likewise, when
limiting the x-component of the magnetic field in Eq. (43) for the face (i + 1/2,j,k) we multiply the higher moments with
2(1 � di,j,k)(1 � di+1,j,k)/(2 � di,j,k � di+1,j,k), i.e. the reciprocal average derived from the two abutting zones. A similar approach
can be taken for limiting the y and z-components of the magnetic fields in Eqs. (44) and (45).

It was felt that even in the vicinity of strong shocks one should not obliterate structure altogether. For that reason, we felt
that terms that have linear variations in Eqs. (4), (43), (44) and (45) should be blended with some fraction of a slope limiter.
The detector function should also be active in a zone that is about to be run over by a strong shock in the next step. For such
reasons, our treatment of the first moments is modified a little. In a dimension-by-dimension fashion we make the
modification:
if ððdi;j;k > 0Þ and ðdiþ1;j;k ¼ 0Þ and ðPi;j;k > Piþ1;j;kÞÞ then diþ1;j;k ¼ di;j;k

if ððdi;j;k > 0Þ and ðdi�1;j;k ¼ 0Þ and ðPi;j;k > Pi�1;j;kÞÞ then di�1;j;k ¼ di;j;k
Then say that ux is the slope from Eq. (4) evaluated from a WENO scheme and ~ux is the slope evaluated using a MinMod lim-
iter. We then reset ux in the vicinity of a strong shock as follows
ux  ð1� di;j;kÞux þ vdi;j;k~ux
where v 6 1. A similar flattening algorithm for treating the first moments can be instituted in the other two directions.
For second and third order schemes we use d = 1.5 and v = 1. For fourth order schemes we usually use d = 0.5 and v = 0.5.
The detector function described here can also play an important role when using a linearized Riemann solver. As shown

by Quirk [46], linearized Riemann solvers are susceptible to a carbuncle instability when grid-aligned strong shocks are pres-
ent. Einfeldt et al [31] also showed that linearized Riemann solvers do not function well in the presence of strong rarefac-
tions. In both situations, a simple solution consists of blending in some fraction of an HLL flux and this is the approach we
have used here. As a result, at strong shocks or rarefactions, the flux function consists of just the HLL flux while in weak
shocks or rarefactions, the flux function is given entirely by the linearized Riemann solver. Using the detector function
we provide a linear blend of the two in intermediate situations. Other approaches for curing the linearized Riemann solvers
have been presented in Pandolfini and D’Ambrosio [44], Hanawa et al. [35] and references therein but we have not explored
them here. When building a detector function for linearized Riemann solvers one has the option of using not just the undi-
vided divergence of the velocity but also the difference in wave speeds of any given wave family on either side of the
Riemann problem.

Appendix B. Implementation of the ADER-CG Scheme at Second Order of Accuracy

For second order ADER-CG schemes we start with
uðn;g; f; sÞ ¼ ŵ1P0ðnÞP0ðgÞP0ðfÞQ 0ðsÞ þ ŵ2P1ðnÞP0ðgÞP0ðfÞQ0ðsÞ þ ŵ3P0ðnÞP1ðgÞP0ðfÞQ 0ðsÞ þ ŵ4P0ðnÞP0ðgÞP1ðfÞQ0ðsÞ
þ û5PP1 393.959 121.9464 Tm
(s)Tj
/T1_3 1 Tf
0p6a74e7a4þP0P0
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The nodal to modal transcription can be carried out by picking a small number of symmetrically placed nodes in the refer-
ence element. We pick the nodal points
fð1=2;0; 0;0Þ; ð�1=2;0; 0;0Þ; ð0;1=2;0;0Þ; ð0;�1=2;0;0Þ; ð0; 0;1=2; 0Þ; ð0;0;�1=2; 0Þ; ð0;0;0;1Þg
The nodal to modal transcription of the fluxes at s = 0 is given by
f̂ 1 ¼ ð�f 1 þ �f 2 þ �f 3 þ �f 4 þ �f 5 þ �f 6Þ=6

f̂ 2 ¼ �f 1 � �f 2

f̂ 3 ¼ �f 3 � �f 4

f̂ 4 ¼ �f 5 � �f 6
The nodal to modal transcription of the fluxes at s > 0 is given by
f̂ 5 ¼ �f 7 � f̂ 1
Appendix C. Implementation of the ADER-CG scheme at fourth order of accuracy

For fourth order ADER-CG schemes we start with
uðn;g; f; sÞ ¼ ŵ1P0ðnÞP0ðgÞP0ðfÞQ 0ðsÞ
þ ŵ2P1ðnÞP0ðgÞP0ðfÞQ0ðsÞ þ ŵ3P0ðnÞP1ðgÞP0ðfÞQ0ðsÞ þ ŵ4P0ðnÞP0ðgÞP1ðfÞQ 0ðsÞ
þ ŵ5P2ðnÞP0ðgÞP0ðfÞQ0ðsÞ þ ŵ6P0ðnÞP2ðgÞP0ðfÞQ0ðsÞ þ ŵ7P0ðnÞP0ðgÞP2ðfÞQ 0ðsÞ
þ ŵ8P1ðnÞP1ðgÞP0ðfÞQ0ðsÞ þ ŵ9P0ðnÞP1ðgÞP1ðfÞQ0ðsÞ þ ŵ10P1ðnÞP0ðgÞP1ðfÞQ0ðsÞ
þ ŵ11P3ðnÞP0ðgÞP0ðfÞQ 0ðsÞ þ ŵ12P0ðnÞP3ðgÞP0ðfÞQ 0ðsÞ þ ŵ13P0ðnÞP0ðgÞP3ðfÞQ 0ðsÞ
þ ŵ14P2ðnÞP1ðgÞP0ðfÞQ 0ðsÞ þ ŵ15P2ðnÞP0ðgÞP1ðfÞQ 0ðsÞ
þ ŵ16P1ðnÞP2ðgÞP0ðfÞQ 0ðsÞ þ ŵ17P0ðnÞP2ðgÞP1ðfÞQ 0ðsÞ
þ ŵ18P1ðnÞP0ðgÞP2ðfÞQ 0ðsÞ þ ŵ19P0ðnÞP1ðgÞP2ðfÞQ 0ðsÞ
þ ŵ20P1ðnÞP1ðgÞP1ðfÞQ 0ðsÞ
þ û21P0ðnÞP0ðgÞP0ðfÞQ1ðsÞ þ û22P0ðnÞP0ðgÞP0ðfÞQ2ðsÞ þ û23P0ðnÞP0ðgÞP0ðfÞQ 3ðsÞ
þ û24P1ðnÞP0ðgÞP0ðfÞQ1ðsÞ þ û25P0ðnÞP1ðgÞP0ðfÞQ1ðsÞ þ û26P0ðnÞP0ðgÞP1ðfÞQ 1ðsÞ
þ û27P1ðnÞP0ðgÞP0ðfÞQ2ðsÞ þ û28P0ðnÞP1ðgÞP0ðfÞQ2ðsÞ þ û29P0ðnÞP0ðgÞP1ðfÞQ 2ðsÞ
þ û30P2ðnÞP0ðgÞP0ðfÞQ1ðsÞ þ û31P0ðnÞP2ðgÞP0ðfÞQ1ðsÞ þ û32P0ðnÞP0ðgÞP2ðfÞQ 1ðsÞ
þ û33P1ðnÞP1ðgÞP0ðfÞQ1ðsÞ þ û34P0ðnÞP1ðgÞP1ðfÞQ1ðsÞ þ û35P1ðnÞP0ðgÞP1ðfÞQ 1ðsÞ
The resultant ADER-CG iteration at fourth order is therefore given by
û21 ¼ �
f̂ 11

10
� f̂ 2 �

ĝ12

10
� ĝ3 �

ĥ13

10
� ĥ4 þ ŝ1 þ

8
70

ŝ23

û22 ¼ �
f̂ 24

2
� ĝ25

2
� ĥ26

2
þ ŝ21

2
� 3

7
ŝ23

û23 ¼ �
f̂ 27

3
� ĝ28

3
� ĥ29

3
þ ŝ22

3
þ 4

7
ŝ23

û24 ¼ �2f̂ 5 � ĝ8 � ĥ10 þ ŝ2 �
3

10
ŝ27

û25 ¼ �f̂ 8 � 2ĝ6 � ĥ9 þ ŝ3 �
3
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ŝ28
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3
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ŝ29
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ĝ33
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� ĥ35
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ŝ27
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� ĝ31 �
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ŝ28
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� ĝ34
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� ĥ32 þ

ŝ26

2
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ŝ29

û30 ¼ �3f̂ 11 � ĝ14 � ĥ15 þ ŝ5 þ
2
3
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2
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û32 ¼ �f̂ 18 � ĝ19 � 3ĥ13 þ ŝ7 þ
2
3

ŝ32

û33 ¼ �2f̂ 14 � 2ĝ16 � ĥ20 þ ŝ8 þ
2
3

ŝ33

û34 ¼ �f̂ 20 � 2ĝ17 � 2ĥ19 þ ŝ9 þ
2
3

ŝ34

û35 ¼ �2f̂ 15 � ĝ20 � 2ĥ18 þ ŝ10 þ
2
3

ŝ35
The nodal to modal transcription can be carried out by picking a small number of symmetrically placed nodes in the ref-
erence element. We pick the nodal points
fð0; 0;0;0Þ; ð1=2; 0;0; 0Þ; ð1=4;0;0; 0Þ; ð�1=4; 0;0; 0Þ; ð�1=2; 0;0; 0Þ; ð0;1=2;0; 0Þ;
ð0;1=4; 0;0Þ; ð0;�1=4; 0;0Þ; ð0;�1=2;0;0Þ; ð0;0;1=2;0Þ; ð0;0;1=4;0Þ; ð0;0;�1=4;0Þ;
ð0;0;�1=2;0Þ; ð1=2;1=2;1=2; 0Þ; ð0;1=2;1=2;0Þ; ð�1=2;1=2;1=2;0Þ; ð1=2;�1=2;1=2; 0Þ;
ð0;�1=2;1=2;0Þ; ð�1=2;�1=2;1=2;0Þ; ð1=2;1=2;�1=2; 0Þ; ð0;1=2;�1=2; 0Þ; ð�1=2;1=2;�1=2; 0Þ;
ð1=2;�1=2;�1=2;0Þ; ð0;�1=2;�1=2;0Þ; ð�1=2;�1=2;�1=2; 0Þ; ð1=2;0;1=2;0Þ; ð�1=2;0;1=2;0Þ;
ð1=2;0;�1=2;0Þ; ð�1=2;0;�1=2;0Þ; ð1=2;1=2;0;0Þ; ð�1=2;1=2;0;0Þ; ð1=2;�1=2;0; 0Þ;
ð�1=2;�1=2;0;0Þ;
ð0;0;0;1=3Þ; ð1=2;0;0;1=3Þ; ð�1=2; 0;0;1=3Þ; ð0;1=2;0;1=3Þ; ð0;�1=2; 0;1=3Þ;
ð0;0;1=2;1=3Þ; ð0;0;�1=2;1=3Þ; ð1=2;1=2;1=2;1=3Þ; ð�1=2;1=2;1=2;1=3Þ;
ð1=2;�1=2;1=2;1=3Þ; ð�1=2;�1=2;1=2;1=3Þ; ð1=2;1=2;�1=2;1=3Þ; ð�1=2;1=2;�1=2;1=3Þ;
ð1=2;�1=2;�1=2;1=3Þ; ð�1=2;�1=2;�1=2;1=3Þ;
ð1=2;0; 0;2=3Þ; ð�1=2;0;0;2=3Þ; ð0;1=2;0;2=3Þ; ð0;�1=2;0;2=3Þ; ð0;0;1=2;2=3Þ;
ð0;0;�1=2;2=3Þ;
ð0;0;0;1Þ; g
The nodal to modal transcription of the fluxes at s = 0 is given by
f̂ 5 ¼ 2ð�f 2 � 2�f 1 þ �f 5Þ
f̂ 6 ¼ 2ð�f 6 � 2�f 1 þ �f 9Þ
f̂ 7 ¼ 2ð�f 10 � 2�f 1 þ �f 13Þ
f̂ 8 ¼ ð�f 14 � �f 16 � �f 17 þ �f 19 þ �f 20 � �f 22 � �f 23 þ �f 25Þ=2

f̂ 9 ¼ ð�f 14 � �f 17 � �f 20 þ �f 23 þ �f 16 � �f 19 � �f 22 þ �f 25Þ=2

f̂ 10 ¼ ð�f 14 � �f 16 � �f 20 þ �f 22 þ �f 17 � �f 19 � �f 23 þ �f 25Þ=2

f̂ 11 ¼ ð16�f 2 � 16�f 5 � 32�f 3 þ 32�f 4Þ=3

f̂ 12 ¼ ð16�f 6 � 16�f 9 � 32�f 7 þ 32�f 8Þ=3

f̂ 13 ¼ ð16�f 10 � 16�f 13 � 32�f 11 þ 32�f 12Þ=3

f̂ 14 ¼ �f 14 � 2�f 15 þ �f 16 � �f 17 þ 2�f 18 � �f 19 þ �f 20 � 2�f 21 þ �f 22 � �f 23 þ 2�f 24 � �f 25

f̂ 15 ¼ �f 14 � 2�f 15 þ �f 16 � �f 20 þ 2�f 21 � �f 22 þ �f 17 � 2�f 18 þ �f 19 � �f 23 þ 2�f 24 � �f 25

f̂ 16 ¼ �f 14 � 2�f 26 þ �f 17 � �f 16 þ 2�f 27 � �f 19 þ �f 20 � 2�f 28 þ �f 23 � �f 22 þ 2�f 29 � �f 25

f̂ 17 ¼ �f 14 � 2�f 26 þ �f 17 � �f 20 þ 2�f 28 � �f 23 þ �f 16 � 2�f 27 þ �f 19 � �f 22 þ 2�f 29 � �f 25

f̂ 18 ¼ �f 14 � 2�f 30 þ �f 20 � �f 16 þ 2�f 31 � �f 22 þ �f 17 � 2�f 32 þ �f 23 � �f 19 þ 2�f 33 � �f 25

f̂ 19 ¼ �f 14 � 2�f 30 þ �f 20 � �f 17 þ 2�f 32 � �f 23 þ �f 16 � 2�f 31 þ �f 22 � �f 19 þ 2�f 33 � �f 25

f̂ 20 ¼ �f 14 � �f 16 � �f 17 þ �f 19 � �f 20 þ �f 22 þ �f 23 � �f 25

f̂ 1 ¼ �f 1 þ ðf̂ 5 þ f̂ 6 þ f̂ 7Þ=12

f̂ 2 ¼ �f 2 � �f 5 �
f̂ 11

10
þ ðf̂ 16 þ f̂ 18Þ=12

f̂ 3 ¼ �f 6 � �f 9 �
f̂ 12

10
þ ðf̂ 14 þ f̂ 19Þ=12

f̂ 4 ¼ �f 10 � �f 13 �
f̂ 13

10
þ ðf̂ 15 þ f̂ 17Þ=12
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The nodal to modal transcription of the fluxes at s > 0 is given by
f̂ 24 ¼ ð�9�f 2 þ 9�f 5 þ 12�f 35 � 12�f 36 � 3�f 49 þ 3�f 50Þ=2

f̂ 25 ¼ ð�9�f 6 þ 9�f 9 þ 12�f 37 � 12�f 38 � 3�f 51 þ 3�f 52Þ=2

f̂ 26 ¼ ð�9�f 10 þ 9�f 13 þ 12�f 39 � 12�f 40 � 3�f 53 þ 3�f 54Þ=2

f̂ 27 ¼ 9ð�f 49 � �f 50 � 2�f 35 þ 2�f 36 þ �f 2 � �f 5Þ=2

f̂ 28 ¼ 9ð�f 51 � �f 52 � 2�f 37 þ 2�f 38 þ �f 6 � �f 9Þ=2

f̂ 29 ¼ 9ð�f 53 � �f 54 � 2�f 39 þ 2�f 40 þ �f 10 � �f 13Þ=2

f̂ 30 ¼ 6ð�f 35 � 2�f 34 þ �f 36Þ � 3f̂ 5

f̂ 31 ¼ 6ð�f 37 � 2�f 34 þ �f 38Þ � 3f̂ 6

f̂ 32 ¼ 6ð�f 39 � 2�f 34 þ �f 40Þ � 3f̂ 7

f̂ 33 ¼ 3ð�f 41 � �f 42 � �f 43 þ �f 44 þ �f 45 � �f 46 � �f 47 þ �f 48Þ=2� 3f̂ 8

f̂ 34 ¼ 3ð�f 41 � �f 43 � �f 45 þ �f 47 þ �f 42 � �f 44 � �f 46 þ �f 48Þ=2� 3f̂ 9

f̂ 35 ¼ 3ð�f 41 � �f 42 � �f 45 þ �f 46 þ �f 43 � �f 44 � �f 47 þ �f 48Þ=2� 3f̂ 10

t̂1 ¼ �f 34 � �f 1 þ ðf̂ 30 þ f̂ 31 þ f̂ 32Þ=36

t̂2 ¼ ð�f 49 þ �f 50 þ �f 51 þ �f 52 þ �f 53 þ �f 54Þ=6� �f 1 � ðf̂ 5 þ f̂ 6 þ f̂ 7Þ=12

t̂3 ¼ �f 55 � �f 1 þ ðf̂ 30 þ f̂ 31 þ f̂ 32Þ=12

f̂ 21 ¼ ð18t̂1 � 9t̂2 þ 2t̂3Þ=2

f̂ 22 ¼ ð�45t̂1 þ 36t̂2 � 9t̂3Þ=2

f̂ 23 ¼ ð27t̂1 � 27t̂2 þ 9t̂3Þ=2
where t̂1; t̂2 and t̂3 are temporary variables.
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